These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24184342)

  • 1. Development and validation of an unsupervised scoring system (Autonomate) for skin conductance response analysis.
    Green SR; Kragel PA; Fecteau ME; LaBar KS
    Int J Psychophysiol; 2014 Mar; 91(3):186-93. PubMed ID: 24184342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis.
    Bach DR
    Biol Psychol; 2014 Dec; 103():63-8. PubMed ID: 25148785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Methods for quantifying phasic skin conductance amplitudes: threats to validity?].
    Zimmer H; Vossel G
    Z Exp Angew Psychol; 1993; 40(4):676-702. PubMed ID: 8310721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-series analysis for rapid event-related skin conductance responses.
    Bach DR; Flandin G; Friston KJ; Dolan RJ
    J Neurosci Methods; 2009 Nov; 184(2):224-34. PubMed ID: 19686778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psychophysiological investigations in depersonalization disorder and effects of electrodermal biofeedback.
    Schoenberg PL; Sierra M; David AS
    J Trauma Dissociation; 2012; 13(3):311-29. PubMed ID: 22545565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrodermal activity in schizophrenia: a quantitative study using a short interstimulus paradigm.
    Lim CL; Gordon E; Harris A; Bahramali H; Li WM; Manor B; Rennie C
    Biol Psychiatry; 1999 Jan; 45(1):127-35. PubMed ID: 9894584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodermal response propagation time as a potential psychophysiological marker.
    Silva H; Fred A; Lourenco A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6756-9. PubMed ID: 23367480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive thresholding increases sensitivity to detect changes in the rate of skin conductance responses to psychologically arousing stimuli in both laboratory and ambulatory settings.
    Kleckner IR; Wormwood JB; Jones RM; Culakova E; Barrett LF; Lord C; Quigley KS; Goodwin MS
    Int J Psychophysiol; 2024 Feb; 196():112280. PubMed ID: 38104772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral correlates of skin conductance responses in a cognitive task.
    Zhang S; Hu S; Chao HH; Luo X; Farr OM; Li CS
    Neuroimage; 2012 Sep; 62(3):1489-98. PubMed ID: 22634217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psychological correlates of nonspecific skin conductance responses.
    Nikula R
    Psychophysiology; 1991 Jan; 28(1):86-90. PubMed ID: 1886966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A matching pursuit algorithm for inferring tonic sympathetic arousal from spontaneous skin conductance fluctuations.
    Bach DR; Staib M
    Psychophysiology; 2015 Aug; 52(8):1106-12. PubMed ID: 25930177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reward sensitivity and electrodermal responses to actions and outcomes in a go/no-go task.
    Le TM; Wang W; Zhornitsky S; Dhingra I; Zhang S; Li CR
    PLoS One; 2019; 14(7):e0219147. PubMed ID: 31344045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mixed filter algorithm for sympathetic arousal tracking from skin conductance and heart rate measurements in Pavlovian fear conditioning.
    Wickramasuriya DS; Faghih RT
    PLoS One; 2020; 15(4):e0231659. PubMed ID: 32324756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breathe Easy EDA: A MATLAB toolbox for psychophysiology data management, cleaning, and analysis.
    Ksander JC; Kark SM; Madan CR
    F1000Res; 2018; 7():216. PubMed ID: 30647904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Change in the event-related skin conductivity: an indicator of the immediate importance of elaborate information processing?].
    Zimmer H
    Z Exp Angew Psychol; 1992; 39(3):493-513. PubMed ID: 1441653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic measures for quantification of arousal from spontaneous skin conductance fluctuations.
    Bach DR; Friston KJ; Dolan RJ
    Int J Psychophysiol; 2010 Apr; 76(1):52-5. PubMed ID: 20144665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomic arousal in cognitive conflict resolution.
    Kobayashi N; Yoshino A; Takahashi Y; Nomura S
    Auton Neurosci; 2007 Mar; 132(1-2):70-5. PubMed ID: 17067858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous recordings of impedance and phase angle during electrodermal reactions and the locus of impedance change.
    Boucsein W; Schaefer F; Neijenhuisen H
    Psychophysiology; 1989 May; 26(3):369-76. PubMed ID: 2756087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimising a model-based approach to inferring fear learning from skin conductance responses.
    Staib M; Castegnetti G; Bach DR
    J Neurosci Methods; 2015 Nov; 255():131-8. PubMed ID: 26291885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodermal lability and myocardial reactivity to stress.
    Kelsey RM
    Psychophysiology; 1991 Nov; 28(6):619-31. PubMed ID: 1816589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.