BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24184469)

  • 21. Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy.
    Olsson AM; Bjurhager I; Gerber L; Sundberg B; Salmén L
    Planta; 2011 Jun; 233(6):1277-86. PubMed ID: 21340698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wood formation in Angiosperms.
    Déjardin A; Laurans F; Arnaud D; Breton C; Pilate G; Leplé JC
    C R Biol; 2010 Apr; 333(4):325-34. PubMed ID: 20371107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safranine fluorescent staining of wood cell walls.
    Bond J; Donaldson L; Hill S; Hitchcock K
    Biotech Histochem; 2008 Jun; 83(3-4):161-71. PubMed ID: 18802812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Simulation of the Deformation Behavior of Softwood Tracheids for the Calculation of the Mechanical Properties of Wood-Polymer Composites.
    Hartmann R; Puch F
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunolocalization of beta-1-4-galactan and its relationship with lignin distribution in developing compression wood of Cryptomeria japonica.
    Kim JS; Awano T; Yoshinaga A; Takabe K
    Planta; 2010 Jun; 232(1):109-19. PubMed ID: 20376677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood.
    Hiraide H; Tobimatsu Y; Yoshinaga A; Lam PY; Kobayashi M; Matsushita Y; Fukushima K; Takabe K
    New Phytol; 2021 Jun; 230(6):2186-2199. PubMed ID: 33570753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-situ visualizing selective lignin dissolution of tracheids wall in reaction wood.
    Dai L; Wang J; Liu XE; Ma Q; Fei B; Ma J; Jin Z
    Int J Biol Macromol; 2022 Dec; 222(Pt A):691-700. PubMed ID: 36174859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dimensional Changes of Tracheids during Drying of Radiata Pine (Pinus radiata D. Don) Compression Woods: A Study Using Variable-Pressure Scanning Electron Microscopy (VP-SEM).
    Zhang M; Smith BG; McArdle BH; Chavan RR; James BJ; Harris PJ
    Plants (Basel); 2018 Feb; 7(1):. PubMed ID: 29495536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase.
    Bjurhager I; Olsson AM; Zhang B; Gerber L; Kumar M; Berglund LA; Burgert I; Sundberg B; Salmén L
    Biomacromolecules; 2010 Sep; 11(9):2359-65. PubMed ID: 20831275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood.
    Donaldson LA; Radotic K
    J Microsc; 2013 Aug; 251(2):178-87. PubMed ID: 23763341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure.
    Adobes-Vidal M; Frey M; Keplinger T
    J Struct Biol; 2020 Aug; 211(2):107532. PubMed ID: 32442716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization.
    Lichtenegger H; Reiterer A; Stanzl-Tschegg SE; Fratzl P
    J Struct Biol; 1999 Dec; 128(3):257-69. PubMed ID: 10633065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress.
    Altaner CM; Jarvis MC
    J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae).
    Nagai S; Utsumi Y
    Am J Bot; 2012 Sep; 99(9):1553-61. PubMed ID: 22917949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of microfibril angle in molecular deformation of cellulose fibrils in Pinus massoniana compression wood and opposite wood studied by in-situ WAXS.
    Guo F; Wang J; Liu W; Hu J; Chen Y; Zhang X; Yang R; Yu Y
    Carbohydr Polym; 2024 Jun; 334():122024. PubMed ID: 38553223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia.
    Samuels AL; Rensing KH; Douglas CJ; Mansfield SD; Dharmawardhana DP; Ellis BE
    Planta; 2002 Nov; 216(1):72-82. PubMed ID: 12430016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.
    Donaldson LA; Kroese HW; Hill SJ; Franich RA
    J Microsc; 2015 Sep; 259(3):228-36. PubMed ID: 25925133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer.
    Goswami L; Dunlop JW; Jungnikl K; Eder M; Gierlinger N; Coutand C; Jeronimidis G; Fratzl P; Burgert I
    Plant J; 2008 Nov; 56(4):531-8. PubMed ID: 18643995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microstructure-stiffness relationships of ten European and tropical hardwood species.
    de Borst K; Bader TK; Wikete C
    J Struct Biol; 2012 Feb; 177(2):532-42. PubMed ID: 22079401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall.
    Yamamoto H; Kojima Y; Okuyama T; Abasolo WP; Gril J
    J Biomech Eng; 2002 Aug; 124(4):432-40. PubMed ID: 12188209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.