These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24184710)

  • 21. Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods.
    Lesot P; Kazimierczuk K; Trébosc J; Amoureux JP; Lafon O
    Magn Reson Chem; 2015 Nov; 53(11):927-39. PubMed ID: 26332109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra.
    Matsuki Y; Eddy MT; Herzfeld J
    J Am Chem Soc; 2009 Apr; 131(13):4648-56. PubMed ID: 19284727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D localized 2D ultrafast J-resolved magnetic resonance spectroscopy: in vitro study on a 7 T imaging system.
    Roussel T; Giraudeau P; Ratiney H; Akoka S; Cavassila S
    J Magn Reson; 2012 Feb; 215():50-5. PubMed ID: 22227288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image reconstruction from Fourier domain data sampled along a zig-zag trajectory.
    Yan H; Braun M
    Magn Reson Med; 1991 Apr; 18(2):405-10. PubMed ID: 2046521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonuniform sampling of hypercomplex multidimensional NMR experiments: Dimensionality, quadrature phase and randomization.
    Schuyler AD; Maciejewski MW; Stern AS; Hoch JC
    J Magn Reson; 2015 May; 254():121-30. PubMed ID: 25899289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets.
    Kazimierczuk K; Zawadzka A; Koźmiński W; Zhukov I
    J Magn Reson; 2007 Oct; 188(2):344-56. PubMed ID: 17822933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perspectives in magnetic resonance: NMR in the post-FFT era.
    Hyberts SG; Arthanari H; Robson SA; Wagner G
    J Magn Reson; 2014 Apr; 241():60-73. PubMed ID: 24656081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
    Djebra Y; Marin T; Han PK; Bloch I; Fakhri GE; Ma C
    IEEE Trans Med Imaging; 2023 Jan; 42(1):158-169. PubMed ID: 36121938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerating image reconstruction for multi-contrast MRI based on Y-Net3.
    Cai X; Hou X; Sun R; Chang X; Zhu H; Jia S; Nie S
    J Xray Sci Technol; 2023; 31(4):797-810. PubMed ID: 37248943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy.
    Walheim J; Gotschy A; Kozerke S
    Magn Reson Med; 2019 Jan; 81(1):514-523. PubMed ID: 30265753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of band-selectable digital filtering in magnetic resonance image enhancement.
    Mitchell DK; Nichols ST; Smith MR; Scott K
    Magn Reson Med; 1989 Mar; 9(3):353-68. PubMed ID: 2710000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radial magnetic resonance image reconstruction with a deep unrolled projected fast iterative soft-thresholding network.
    Qu B; Zhang J; Kang T; Lin J; Lin M; She H; Wu Q; Wang M; Zheng G
    Comput Biol Med; 2024 Jan; 168():107707. PubMed ID: 38000244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.
    Shigemitsu Y; Ikeya T; Yamamoto A; Tsuchie Y; Mishima M; Smith BO; Güntert P; Ito Y
    Biochem Biophys Res Commun; 2015 Feb; 457(2):200-5. PubMed ID: 25545060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MR image reconstruction of sparsely sampled 3D k-space data by projection-onto-convex sets.
    Peng H; Sabati M; Lauzon L; Frayne R
    Magn Reson Imaging; 2006 Jul; 24(6):761-73. PubMed ID: 16824971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.
    Wu Y; Ma Y; Capaldi DP; Liu J; Zhao W; Du J; Xing L
    Magn Reson Imaging; 2020 Feb; 66():93-103. PubMed ID: 30880112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion correction based reconstruction method for compressively sampled cardiac MR imaging.
    Ahmed AH; Qureshi IM; Shah JA; Zaheer M
    Magn Reson Imaging; 2017 Feb; 36():159-166. PubMed ID: 27746392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blind Compressed Sensing Enables 3-Dimensional Dynamic Free Breathing Magnetic Resonance Imaging of Lung Volumes and Diaphragm Motion.
    Bhave S; Lingala SG; Newell JD; Nagle SK; Jacob M
    Invest Radiol; 2016 Jun; 51(6):387-99. PubMed ID: 26863578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.
    Shrot Y; Frydman L
    J Magn Reson; 2011 Apr; 209(2):352-8. PubMed ID: 21316276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.