These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24184753)
1. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
2. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
3. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis. Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928 [TBL] [Abstract][Full Text] [Related]
4. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
5. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses. Young AJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392 [TBL] [Abstract][Full Text] [Related]
6. Intent recognition in a powered lower limb prosthesis using time history information. Young AJ; Simon AM; Fey NP; Hargrove LJ Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324 [TBL] [Abstract][Full Text] [Related]
7. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks. Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions. Zhang F; Liu M; Huang H PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084 [TBL] [Abstract][Full Text] [Related]
9. Toward Minimal-Sensing Locomotion Mode Recognition for a Powered Knee-Ankle Prosthesis. Khademi G; Simon D IEEE Trans Biomed Eng; 2021 Mar; 68(3):967-979. PubMed ID: 32784127 [TBL] [Abstract][Full Text] [Related]
10. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial. Hargrove LJ; Young AJ; Simon AM; Fey NP; Lipschutz RD; Finucane SB; Halsne EG; Ingraham KA; Kuiken TA JAMA; 2015 Jun; 313(22):2244-52. PubMed ID: 26057285 [TBL] [Abstract][Full Text] [Related]
11. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees. Khademi G; Mohammadi H; Simon D Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668 [TBL] [Abstract][Full Text] [Related]
12. Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis. Simon AM; Ingraham KA; Spanias JA; Young AJ; Finucane SB; Halsne EG; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1164-1171. PubMed ID: 28113980 [TBL] [Abstract][Full Text] [Related]
13. A Method for Locomotion Mode Identification Using Muscle Synergies. Afzal T; Iqbal K; White G; Wright AB IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983 [TBL] [Abstract][Full Text] [Related]
14. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses. Russell Esposito E; Aldridge Whitehead JM; Wilken JM Prosthet Orthot Int; 2016 Jun; 40(3):311-9. PubMed ID: 25628378 [TBL] [Abstract][Full Text] [Related]
15. Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes. Simon AM; Fey NP; Finucane SB; Lipschutz RD; Hargrove LJ IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650371. PubMed ID: 24187190 [TBL] [Abstract][Full Text] [Related]
16. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals. Afzal T; White G; Wright AB; Iqbal K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886 [TBL] [Abstract][Full Text] [Related]
17. A Stair Ascent and Descent Controller for a Powered Ankle Prosthesis. Culver S; Bartlett H; Shultz A; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):993-1002. PubMed ID: 29752234 [TBL] [Abstract][Full Text] [Related]
18. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses. Xu D; Feng Y; Mai J; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741 [TBL] [Abstract][Full Text] [Related]
19. Locomotion mode classification using a wearable capacitive sensing system. Chen B; Zheng E; Fan X; Liang T; Wang Q; Wei K; Wang L IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):744-55. PubMed ID: 23694674 [TBL] [Abstract][Full Text] [Related]
20. Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes. Simon AM; Ingraham KA; Fey NP; Finucane SB; Lipschutz RD; Young AJ; Hargrove LJ PLoS One; 2014; 9(6):e99387. PubMed ID: 24914674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]