These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24184767)

  • 21. Developmental origin of a major difference in sensory patterning between zebrafish and bluefin tuna.
    Ghysen A; Dambly-Chaudière C; Coves D; de la Gandara F; Ortega A
    Evol Dev; 2012; 14(2):204-11. PubMed ID: 23189756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size control during organogenesis: Development of the lateral line organs in zebrafish.
    Wada H; Kawakami K
    Dev Growth Differ; 2015 Feb; 57(2):169-78. PubMed ID: 25703577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regeneration in zebrafish lateral line neuromasts: expression of the neural progenitor cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal.
    Hernández PP; Olivari FA; Sarrazin AF; Sandoval PC; Allende ML
    Dev Neurobiol; 2007 Apr; 67(5):637-54. PubMed ID: 17443814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FGF-dependent mechanosensory organ patterning in zebrafish.
    Nechiporuk A; Raible DW
    Science; 2008 Jun; 320(5884):1774-7. PubMed ID: 18583612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio).
    Hernández PP; Moreno V; Olivari FA; Allende ML
    Hear Res; 2006 Mar; 213(1-2):1-10. PubMed ID: 16386394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
    Dalle Nogare D; Chitnis AB
    Semin Cell Dev Biol; 2020 Apr; 100():186-198. PubMed ID: 31901312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium.
    McGraw HF; Drerup CM; Culbertson MD; Linbo T; Raible DW; Nechiporuk AV
    Development; 2011 Sep; 138(18):3921-30. PubMed ID: 21862556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. sox21a directs lateral line patterning by modulating FGF signaling.
    Ariza-Cosano A; Bensimon-Brito A; Gómez-Skarmeta JL; Bessa J
    Dev Neurobiol; 2015 Jan; 75(1):80-92. PubMed ID: 25044975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium.
    Matsuda M; Nogare DD; Somers K; Martin K; Wang C; Chitnis AB
    Development; 2013 Jun; 140(11):2387-97. PubMed ID: 23637337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of diverse lateral line patterns on the teleost caudal fin.
    Wada H; Hamaguchi S; Sakaizumi M
    Dev Dyn; 2008 Oct; 237(10):2889-902. PubMed ID: 18816847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the anterior lateral line system through local tissue-tissue interactions in the zebrafish head.
    Iwasaki M; Yokoi H; Suzuki T; Kawakami K; Wada H
    Dev Dyn; 2020 Dec; 249(12):1440-1454. PubMed ID: 32658373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The zebrafish prospero homolog prox1 is required for mechanosensory hair cell differentiation and functionality in the lateral line.
    Pistocchi A; Feijóo CG; Cabrera P; Villablanca EJ; Allende ML; Cotelli F
    BMC Dev Biol; 2009 Nov; 9():58. PubMed ID: 19948062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line.
    Head JR; Gacioch L; Pennisi M; Meyers JR
    Dev Dyn; 2013 Jul; 242(7):832-46. PubMed ID: 23606225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1.
    Dambly-Chaudière C; Cubedo N; Ghysen A
    BMC Dev Biol; 2007 Mar; 7():23. PubMed ID: 17394634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.
    Dougherty M; Kamel G; Shubinets V; Hickey G; Grimaldi M; Liao EC
    J Craniofac Surg; 2012 Sep; 23(5):1333-7. PubMed ID: 22948622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lef1 controls patterning and proliferation in the posterior lateral line system of zebrafish.
    Gamba L; Cubedo N; Lutfalla G; Ghysen A; Dambly-Chaudiere C
    Dev Dyn; 2010 Dec; 239(12):3163-71. PubMed ID: 20981829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium.
    Dalle Nogare D; Chitnis AB
    Mech Dev; 2017 Dec; 148():69-78. PubMed ID: 28460893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HuC:Kaede, a useful tool to label neural morphologies in networks in vivo.
    Sato T; Takahoko M; Okamoto H
    Genesis; 2006 Mar; 44(3):136-42. PubMed ID: 16496337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell migration in the postembryonic development of the fish lateral line.
    Sapède D; Gompel N; Dambly-Chaudière C; Ghysen A
    Development; 2002 Feb; 129(3):605-15. PubMed ID: 11830562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells.
    Sánchez M; Ceci ML; Gutiérrez D; Anguita-Salinas C; Allende ML
    BMC Biol; 2016 Apr; 14():27. PubMed ID: 27055439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.