These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24185001)

  • 1. Blood-aggregating hydrogel particles for use as a hemostatic agent.
    Behrens AM; Sikorski MJ; Li T; Wu ZJ; Griffith BP; Kofinas P
    Acta Biomater; 2014 Feb; 10(2):701-8. PubMed ID: 24185001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent.
    Mirzakhanian Z; Faghihi K; Barati A; Momeni HR
    J Biomater Sci Polym Ed; 2015; 26(18):1439-51. PubMed ID: 26481485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: Synthesis, characterization and evaluation.
    Xiang J; Wang Y; Yang L; Zhang X; Hong Y; Shen L
    Int J Biol Macromol; 2022 Jan; 196():1-12. PubMed ID: 34843815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control.
    Sundaram MN; Mony U; Varma PK; Rangasamy J
    Carbohydr Polym; 2021 Apr; 258():117634. PubMed ID: 33593536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zeolite-loaded alginate-chitosan hydrogel beads as a topical hemostat.
    Fathi P; Sikorski M; Christodoulides K; Langan K; Choi YS; Titcomb M; Ghodasara A; Wonodi O; Thaker H; Vural M; Behrens A; Kofinas P
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1662-1671. PubMed ID: 28842967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo evaluation of polymer hydrogels for hemorrhage control.
    Casey BJ; Behrens AM; Tsinas ZI; Hess JR; Wu ZJ; Griffith BP; Kofinas P
    J Biomater Sci Polym Ed; 2013; 24(15):1781-93. PubMed ID: 23742132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic enhancement of hemostatic performance of mesoporous silica by hydrocaffeic acid and chitosan.
    Chen J; Ai J; Chen S; Xu Z; Lin J; Liu H; Chen Q
    Int J Biol Macromol; 2019 Oct; 139():1203-1211. PubMed ID: 31415855
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zhang C; Zeng R; Liao Z; Fu C; Luo H; Yang H; Qu Y
    Evid Based Complement Alternat Med; 2017; 2017():5820405. PubMed ID: 28386291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemostatic action of polyurethane foam with 55% polyethylene glycol compared to collagen and gelatin.
    Broekema FI; van Oeveren W; Boerendonk A; Sharma PK; Bos RR
    Biomed Mater Eng; 2016 Aug; 27(2-3):149-59. PubMed ID: 27567771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional improvement of hemostatic dressing by addition of recombinant batroxobin.
    Seon GM; Lee MH; Kwon BJ; Kim MS; Koo MA; Kim D; Seomun Y; Kim JT; Park JC
    Acta Biomater; 2017 Jan; 48():175-185. PubMed ID: 27769944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo and in vitro hemostatic activity of Chromolaena odorata leaf extract.
    Pandith H; Thongpraditchote S; Wongkrajang Y; Gritsanapan W
    Pharm Biol; 2012 Sep; 50(9):1073-7. PubMed ID: 22881138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxide hemostatic activity.
    Ostomel TA; Shi Q; Stucky GD
    J Am Chem Soc; 2006 Jul; 128(26):8384-5. PubMed ID: 16802788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Effects of Molecular Parameters on the Hemostatic Properties of Chitosan.
    Hu Z; Lu S; Cheng Y; Kong S; Li S; Li C; Yang L
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30513622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and assessment of kerateine nanoparticles for use as a hemostatic agent.
    Luo T; Hao S; Chen X; Wang J; Yang Q; Wang Y; Weng Y; Wei H; Zhou J; Wang B
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():352-8. PubMed ID: 27040229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage.
    Yang X; Liu W; Shi Y; Xi G; Wang M; Liang B; Feng Y; Ren X; Shi C
    Acta Biomater; 2019 Nov; 99():220-235. PubMed ID: 31449930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium Ion-Coupled Polyphosphates with Different Degrees of Polymerization for Bleeding Control.
    Tong L; Zhang D; Huang Z; Gao F; Zhang S; Chen F; Liu C
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):43244-43256. PubMed ID: 39136271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control.
    Sundaram MN; Amirthalingam S; Mony U; Varma PK; Jayakumar R
    Int J Biol Macromol; 2019 May; 129():936-943. PubMed ID: 30738162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on hemostatic effect and mechanism of starch-based nano-microporous particles.
    Zheng C; Bai Q; Wu W; Han K; Zeng Q; Dong K; Zhang Y; Lu T
    Int J Biol Macromol; 2021 May; 179():507-518. PubMed ID: 33711370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How hemostatic agents interact with the coagulation cascade.
    Overbey DM; Jones EL; Robinson TN
    AORN J; 2014 Aug; 100(2):148-59. PubMed ID: 25080416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of crosslinked porous starch hemostatic.
    Qian J; Chen Y; Yang H; Zhao C; Zhao X; Guo H
    Int J Biol Macromol; 2020 Oct; 160():429-436. PubMed ID: 32464204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.