These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24185426)

  • 21. Multitasking in the olfactory system: context-dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons.
    Christensen TA; Waldrop BR; Hildebrand JG
    J Neurosci; 1998 Aug; 18(15):5999-6008. PubMed ID: 9671685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Odor discrimination in Drosophila: from neural population codes to behavior.
    Parnas M; Lin AC; Huetteroth W; Miesenböck G
    Neuron; 2013 Sep; 79(5):932-44. PubMed ID: 24012006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast odor learning improves reliability of odor responses in the locust antennal lobe.
    Bazhenov M; Stopfer M; Sejnowski TJ; Laurent G
    Neuron; 2005 May; 46(3):483-92. PubMed ID: 15882647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Olfactory system structure and function in newly hatched and adult locusts.
    Sun K; Ray S; Gupta N; Aldworth Z; Stopfer M
    Sci Rep; 2024 Jan; 14(1):2608. PubMed ID: 38297144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generalized vs. stimulus-specific learned fear differentially modifies stimulus encoding in primary sensory cortex of awake rats.
    Chen CF; Barnes DC; Wilson DA
    J Neurophysiol; 2011 Dec; 106(6):3136-44. PubMed ID: 21918001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Olfactory processing and behavior downstream from highly selective receptor neurons.
    Schlief ML; Wilson RI
    Nat Neurosci; 2007 May; 10(5):623-30. PubMed ID: 17417635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Associative conditioning tunes transient dynamics of early olfactory processing.
    Fernandez PC; Locatelli FF; Person-Rennell N; Deleo G; Smith BH
    J Neurosci; 2009 Aug; 29(33):10191-202. PubMed ID: 19692594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural correlates of social odor recognition and the representation of individual distinctive social odors within entorhinal cortex and ventral subiculum.
    Petrulis A; Alvarez P; Eichenbaum H
    Neuroscience; 2005; 130(1):259-74. PubMed ID: 15561442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of odorants across layers in locust olfactory pathway.
    Sanda P; Kee T; Gupta N; Stopfer M; Bazhenov M
    J Neurophysiol; 2016 May; 115(5):2303-16. PubMed ID: 26864765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Why sniff fast? The relationship between sniff frequency, odor discrimination, and receptor neuron activation in the rat.
    Wesson DW; Verhagen JV; Wachowiak M
    J Neurophysiol; 2009 Feb; 101(2):1089-102. PubMed ID: 19052108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitatory local interneurons enhance tuning of sensory information.
    Assisi C; Stopfer M; Bazhenov M
    PLoS Comput Biol; 2012; 8(7):e1002563. PubMed ID: 22807661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus.
    Saha D; Sun W; Li C; Nizampatnam S; Padovano W; Chen Z; Chen A; Altan E; Lo R; Barbour DL; Raman B
    Nat Commun; 2017 May; 8():15413. PubMed ID: 28534502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between afferent and central temporal patterns in the locust olfactory system.
    Wehr M; Laurent G
    J Neurosci; 1999 Jan; 19(1):381-90. PubMed ID: 9870967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of adaptation on odor discrimination.
    Haney S; Saha D; Raman B; Bazhenov M
    J Neurophysiol; 2018 Jul; 120(1):171-185. PubMed ID: 29589811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.
    Kaplan BA; Lansner A
    Front Neural Circuits; 2014; 8():5. PubMed ID: 24570657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity.
    Friedrich RW; Laurent G
    Science; 2001 Feb; 291(5505):889-94. PubMed ID: 11157170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environment-specific modulation of odorant representations in the honeybee brain.
    Chakroborty NK; Menzel R; Schubert M
    Eur J Neurosci; 2016 Dec; 44(12):3080-3093. PubMed ID: 27748970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise olfactory responses tile the sniff cycle.
    Shusterman R; Smear MC; Koulakov AA; Rinberg D
    Nat Neurosci; 2011 Jul; 14(8):1039-44. PubMed ID: 21765422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time and space are complementary encoding dimensions in the moth antennal lobe.
    Knüsel P; Carlsson MA; Hansson BS; Pearce TC; Verschure PF
    Network; 2007 Mar; 18(1):35-62. PubMed ID: 17454681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.