These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24185517)

  • 1. Agrobacterium rhizogenes rol genes induce productivity-related phenotypical modifications in "creeping-rooted" alfalfa types.
    Frugis G; Caretto S; Santini L; Mariotti D
    Plant Cell Rep; 1995 May; 14(8):488-92. PubMed ID: 24185517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of foreign genes co-transformed plants of Medicago sativa L by Agrobacterium rhizogenes.
    Lü D; Cao X; Tang S; Tian X
    Sci China C Life Sci; 2000 Aug; 43(4):387-94. PubMed ID: 18726342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hairy root transformation in alfalfa (Medicago sativa L.).
    Spanò L; Mariotti D; Pezzotti M; Damiani F; Arcioni S
    Theor Appl Genet; 1987 Feb; 73(4):523-30. PubMed ID: 24241108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ri-plasmid as a helper for introducing vector DNA into alfalfa plants.
    Sukhapinda K; Spivey R; Shahin EA
    Plant Mol Biol; 1987 May; 8(3):209-16. PubMed ID: 24301125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alfalfa (Medicago sativa L.).
    Fu C; Hernandez T; Zhou C; Wang ZY
    Methods Mol Biol; 2015; 1223():213-21. PubMed ID: 25300843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens -transformed roots and Agrobacterium rhizogenes-transformed hairy roots.
    Crane C; Wright E; Dixon RA; Wang ZY
    Planta; 2006 May; 223(6):1344-54. PubMed ID: 16575594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only.
    Bonhomme V; Laurain-Mattar D; Lacoux J; Fliniaux M; Jacquin-Dubreuil A
    J Biotechnol; 2000 Aug; 81(2-3):151-8. PubMed ID: 10989174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes.
    Trulson AJ; Simpson RB; Shahin EA
    Theor Appl Genet; 1986 Nov; 73(1):11-5. PubMed ID: 24240740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cotransformation and differential expression of introduced genes into potato (Solanum tuberosum L.) cv Bintje.
    Ottaviani MP; Hänisch Ten Cate CH
    Theor Appl Genet; 1991 Jun; 81(6):761-8. PubMed ID: 24221438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes.
    Visser RG; Jacobsen E; Witholt B; Feenstra WJ
    Theor Appl Genet; 1989 Oct; 78(4):594-600. PubMed ID: 24225690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing genetic variability in oilseed rape (Brassica napus) - Genotypes and phenotypes of oilseed rape transformed by wild type Agrobacterium rhizogenes.
    Hegelund JN; Liang C; Lauridsen UB; Kemp O; Lütken H; Müller R
    Plant Sci; 2018 Jun; 271():20-26. PubMed ID: 29650153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana.
    Aoki S
    J Plant Res; 2004 Aug; 117(4):329-37. PubMed ID: 15338429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Production of transgenic sugarbeet plants (Beta vulgaris L.) using Agrobacterium rhizogenes].
    Kishchenko EM; Komarnitskiĭ IK; Kuchuk NV
    Tsitol Genet; 2005; 39(1):9-13. PubMed ID: 16018172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. rol genes of Agrobacterium rhizogenes cucumopine strain: sequence, effects and pattern of expression.
    Serino G; Clerot D; Brevet J; Costantino P; Cardarelli M
    Plant Mol Biol; 1994 Oct; 26(1):415-22. PubMed ID: 7948887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of Medicago arborea L. with an Agrobacterium rhizogenes binary vector carrying the hygromycin resistance gene.
    Damiani F; Arcioni S
    Plant Cell Rep; 1991 Sep; 10(6-7):300-3. PubMed ID: 24221661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of virus-resistant alfalfa, Medicago sativa L.
    Hill KK; Jarvis-Eagan N; Halk EL; Krahn KJ; Liao LW; Mathewson RS; Merlo DJ; Nelson SE; Rashka KE; Loesch-Fries LS
    Biotechnology (N Y); 1991 Apr; 9(4):373-7. PubMed ID: 1367011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-expression of tonoplast Cation/H(+) antiporter and H(+)-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions.
    Bao AK; Du BQ; Touil L; Kang P; Wang QL; Wang SM
    Plant Biotechnol J; 2016 Mar; 14(3):964-75. PubMed ID: 26268400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction and expression of an insect proteinase inhibitor in alfalfa Medicago sativa L.
    Thomas JC; Wasmann CC; Echt C; Dunn RL; Bohnert HJ; McCoy TJ
    Plant Cell Rep; 1994 Nov; 14(1):31-6. PubMed ID: 24194223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Unified Agrobacterium-Mediated Transformation Protocol for Alfalfa (Medicago sativa L.) and Medicago truncatula.
    Jiang Q; Fu C; Wang ZY
    Methods Mol Biol; 2019; 1864():153-163. PubMed ID: 30415335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).
    Zhang J; Duan Z; Zhang D; Zhang J; Di H; Wu F; Wang Y
    Biochem Biophys Res Commun; 2016 Mar; 472(1):75-82. PubMed ID: 26906624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.