BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24185677)

  • 1. A simple colony-formation assay in liquid medium, termed 'tadpoling', provides a sensitive measure of Saccharomyces cerevisiae culture viability.
    Welch AZ; Koshland DE
    Yeast; 2013 Dec; 30(12):501-9. PubMed ID: 24185677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow cytometry and cell sorting for yeast viability assessment and cell selection.
    Deere D; Shen J; Vesey G; Bell P; Bissinger P; Veal D
    Yeast; 1998 Jan; 14(2):147-60. PubMed ID: 9483803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of viable yeast cells by gravitational field-flow fractionation with fluorescence detection.
    Sanz R; Galceran MT; Puignou L
    Biotechnol Prog; 2004; 20(2):613-8. PubMed ID: 15059009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of Saccharomyces cerevisiae viability using BacLight.
    Zhang T; Fang HH
    Biotechnol Lett; 2004 Jun; 26(12):989-92. PubMed ID: 15269525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quick and reliable assessment of chronological life span in yeast cell populations by flow cytometry.
    Ocampo A; Barrientos A
    Mech Ageing Dev; 2011; 132(6-7):315-23. PubMed ID: 21736893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of cell proliferation of Saccharomyces cerevisiae strains by sedimentation/steric field flow fractionation in situ.
    Farmakis L; Koliadima A
    Biotechnol Prog; 2005; 21(3):971-7. PubMed ID: 15932282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strengths and weaknesses in the determination of Saccharomyces cerevisiae cell viability by ATP-based bioluminescence assay.
    Paciello L; Falco FC; Landi C; Parascandola P
    Enzyme Microb Technol; 2013 Mar; 52(3):157-62. PubMed ID: 23410926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microplate-based method for real-time monitoring of Saccharomyces cerevisiae viability.
    Ye YR; Ye ML; Li LL; Lin Y
    Anal Biochem; 2010 Oct; 405(1):144-6. PubMed ID: 20494644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHENOS: a high-throughput and flexible tool for microorganism growth phenotyping on solid media.
    Barton DBH; Georghiou D; Dave N; Alghamdi M; Walsh TA; Louis EJ; Foster SS
    BMC Microbiol; 2018 Jan; 18(1):9. PubMed ID: 29368646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress.
    López-Martínez G; Pietrafesa R; Romano P; Cordero-Otero R; Capece A
    Yeast; 2013 Aug; 30(8):319-30. PubMed ID: 23576041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent staining with bromocresol purple: a rapid method for determining yeast cell dead count developed as an assay of killer toxin activity.
    Kurzweilová H; Sigler K
    Yeast; 1993 Nov; 9(11):1207-11. PubMed ID: 7509098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The viability assessment of ethanol-producing yeast by computer-aided fluorescence microscopy].
    Puchkov EO
    Mikrobiologiia; 2006; 75(2):193-200. PubMed ID: 16758867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct detection of yeast mutants with reduced viability on plates by erythrosine B staining.
    Bonneu M; Crouzet M; Urdaci M; Aigle M
    Anal Biochem; 1991 Mar; 193(2):225-30. PubMed ID: 1714683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-throughput method to measure the sensitivity of yeast cells to genotoxic agents in liquid cultures.
    Toussaint M; Levasseur G; Gervais-Bird J; Wellinger RJ; Elela SA; Conconi A
    Mutat Res; 2006 Jul; 606(1-2):92-105. PubMed ID: 16713735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation.
    Pina C; Couto JA; Hogg T
    Biotechnol Lett; 2004 Oct; 26(19):1521-7. PubMed ID: 15604791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing yeast viability from cell size measurements?
    Tibayrenc P; Preziosi-Belloy L; Roger JM; Ghommidh C
    J Biotechnol; 2010 Aug; 149(1-2):74-80. PubMed ID: 20599572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enumeration of viable Candida albicans blastospores using tetrabromofluorescein (eosin Y) and flow cytometry.
    Costantino PJ; Budd DE; Gare NF
    Cytometry; 1995 Apr; 19(4):370-5. PubMed ID: 7540973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative agar-invasion assay.
    Zupan J; Raspor P
    J Microbiol Methods; 2008 May; 73(2):100-4. PubMed ID: 18358550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single cell analysis reveals unexpected growth phenotype of S. cerevisiae.
    Kortmann H; Blank LM; Schmid A
    Cytometry A; 2009 Feb; 75(2):130-9. PubMed ID: 19051327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell variability in growing Saccharomyces cerevisiae cell populations measured with automated flow cytometry.
    Kacmar J; Zamamiri A; Carlson R; Abu-Absi NR; Srienc F
    J Biotechnol; 2004 Apr; 109(3):239-54. PubMed ID: 15066762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.