These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24185735)
41. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Kataoka K; Kitagawa R; Inoue M; Naruse D; Sakurai T; Huang HW Biochemistry; 2005 May; 44(18):7004-12. PubMed ID: 15865445 [TBL] [Abstract][Full Text] [Related]
42. Feedback mode SECM study of laccase and bilirubin oxidase immobilised in a sol-gel processed silicate film. Nogala W; Szot K; Burchardt M; Roelfs F; Rogalski J; Opallo M; Wittstock G Analyst; 2010 Aug; 135(8):2051-8. PubMed ID: 20532339 [TBL] [Abstract][Full Text] [Related]
43. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Gallaway J; Wheeldon I; Rincon R; Atanassov P; Banta S; Barton SC Biosens Bioelectron; 2008 Mar; 23(8):1229-35. PubMed ID: 18096378 [TBL] [Abstract][Full Text] [Related]
44. A amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes. Wang Y; Du J; Li Y; Shan D; Zhou X; Xue Z; Lu X Colloids Surf B Biointerfaces; 2012 Feb; 90():62-7. PubMed ID: 22019049 [TBL] [Abstract][Full Text] [Related]
45. Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors. Shie JW; Yogeswaran U; Chen SM Talanta; 2009 May; 78(3):896-902. PubMed ID: 19269447 [TBL] [Abstract][Full Text] [Related]
46. Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior. Rubenwolf S; Strohmeier O; Kloke A; Kerzenmacher S; Zengerle R; von Stetten F Biosens Bioelectron; 2010 Oct; 26(2):841-5. PubMed ID: 20627511 [TBL] [Abstract][Full Text] [Related]
47. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide. Scodeller P; Carballo R; Szamocki R; Levin L; Forchiassin F; Calvo EJ J Am Chem Soc; 2010 Aug; 132(32):11132-40. PubMed ID: 20698679 [TBL] [Abstract][Full Text] [Related]
48. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T; Kataoka K Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447 [TBL] [Abstract][Full Text] [Related]
49. A novel electrochemical approach to the characterization of oxidoreductase reactions. Ikeda T Chem Rec; 2004; 4(3):192-203. PubMed ID: 15293339 [TBL] [Abstract][Full Text] [Related]
50. Control of bioelectrocatalytic transformations on DNA scaffolds. Piperberg G; Wilner OI; Yehezkeli O; Tel-Vered R; Willner I J Am Chem Soc; 2009 Jul; 131(25):8724-5. PubMed ID: 19505077 [TBL] [Abstract][Full Text] [Related]
51. Electroenzymatic reactions with oxygen on laccase-modified electrodes in anhydrous (pure) organic solvent. Yaropolov A; Shleev S; Zaitseva E; Emnéus J; Marko-Varga G; Gorton L Bioelectrochemistry; 2007 May; 70(2):199-204. PubMed ID: 16920407 [TBL] [Abstract][Full Text] [Related]
52. Efficient direct electron transfer with enzyme on a nanostructured carbon film fabricated with a maskless top-down UV/ozone process. Ueda A; Kato D; Kurita R; Kamata T; Inokuchi H; Umemura S; Hirono S; Niwa O J Am Chem Soc; 2011 Apr; 133(13):4840-6. PubMed ID: 21384894 [TBL] [Abstract][Full Text] [Related]
53. On the stability of the "wired" bilirubin oxidase oxygen cathode in serum. Kang C; Shin H; Heller A Bioelectrochemistry; 2006 Jan; 68(1):22-6. PubMed ID: 15923154 [TBL] [Abstract][Full Text] [Related]
54. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Qiu B; Lin Z; Wang J; Chen Z; Chen J; Chen G Talanta; 2009 Apr; 78(1):76-80. PubMed ID: 19174206 [TBL] [Abstract][Full Text] [Related]
55. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Vaz-Dominguez C; Campuzano S; Rüdiger O; Pita M; Gorbacheva M; Shleev S; Fernandez VM; De Lacey AL Biosens Bioelectron; 2008 Dec; 24(4):531-7. PubMed ID: 18585029 [TBL] [Abstract][Full Text] [Related]
56. Carbon nanofiber-based composites for the construction of mediator-free biosensors. Lu X; Zhou J; Lu W; Liu Q; Li J Biosens Bioelectron; 2008 Mar; 23(8):1236-43. PubMed ID: 18083363 [TBL] [Abstract][Full Text] [Related]
57. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Zhang L; Jiang X; Wang E; Dong S Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961 [TBL] [Abstract][Full Text] [Related]
58. [Isolation of bilirubin oxidase from Myrothecium verrucaria and the optimum conditions of enzyme production]. Guo J; Tao S; Mo PS; Liang X; Li G Wei Sheng Wu Xue Bao; 1991 Apr; 31(2):156-9. PubMed ID: 1866943 [TBL] [Abstract][Full Text] [Related]
59. Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes. Ferapontova EE; Shipovskov S; Gorton L Biosens Bioelectron; 2007 May; 22(11):2508-15. PubMed ID: 17081743 [TBL] [Abstract][Full Text] [Related]
60. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190. Han X; Zhao M; Lu L; Liu Y Fungal Biol; 2012 Aug; 116(8):863-71. PubMed ID: 22862914 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]