These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24185994)

  • 41. Thermotolerance is independent of induction of the full spectrum of heat shock proteins and of cell cycle blockage in the yeast Saccharomyces cerevisiae.
    Barnes CA; Johnston GC; Singer RA
    J Bacteriol; 1990 Aug; 172(8):4352-8. PubMed ID: 2198254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The 110-kD spindle pole body component of Saccharomyces cerevisiae is a phosphoprotein that is modified in a cell cycle-dependent manner.
    Friedman DB; Sundberg HA; Huang EY; Davis TN
    J Cell Biol; 1996 Mar; 132(5):903-14. PubMed ID: 8603921
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae.
    Plesset J; Ludwig JR; Cox BS; McLaughlin CS
    J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants.
    McCusker JH; Haber JE
    Genetics; 1988 Jun; 119(2):317-27. PubMed ID: 3294104
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low concentrations of trifluoperazine arrest the cell division cycle of Saccharomyces cerevisiae at two specific stages.
    Eilam Y; Chernichovsky D
    J Gen Microbiol; 1988 Apr; 134(4):1063-9. PubMed ID: 3053981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptional remodeling and G1 arrest in dioxygen stress in Saccharomyces cerevisiae.
    Lee J; Romeo A; Kosman DJ
    J Biol Chem; 1996 Oct; 271(40):24885-93. PubMed ID: 8798765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characteristic alteration in the nuclear DNA polymerase activity during the cell division cycle of Saccharomyces cerevisiae.
    Tsuchiya E; Kimura K; Miyakawa T; Fukui S
    Nucleic Acids Res; 1984 Apr; 12(7):3143-54. PubMed ID: 6371711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle.
    Van Hoof C; Janssens V; De Baere I; de Winde JH; Winderickx J; Dumortier F; Thevelein JM; Merlevede W; Goris J
    J Mol Biol; 2000 Sep; 302(1):103-20. PubMed ID: 10964564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Saccharomyces cerevisiae mating pheromones specifically inhibit the synthesis of proteins destined to be N-glycosylated.
    Orlean P; Schwaiger H; Appeltauer U; Haselbeck A; Tanner W
    Eur J Biochem; 1984 Apr; 140(1):183-9. PubMed ID: 6368231
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Folded chromosomes of Saccharomyces cerevisiae: comparison of response to sporulation medium, arrest at start, and G0 arrest.
    Piñon R; Pratt D
    Chromosoma; 1980; 81(3):379-91. PubMed ID: 7004804
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitochondrial DNA loss by yeast reentry-mutant cells conditionally unable to proliferate from stationary phase.
    Filipak M; Drebot MA; Ireland LS; Singer RA; Johnston GC
    Curr Genet; 1992 Dec; 22(6):471-7. PubMed ID: 1473178
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell-cycle mutations among the collection of Saccharomyces cerevisiae dna mutants.
    Evans DR; Singer RA; Johnston GC; Wheals AE
    FEMS Microbiol Lett; 1994 Feb; 116(2):147-53. PubMed ID: 8150258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents.
    Siede W; Friedberg AS; Dianova I; Friedberg EC
    Genetics; 1994 Oct; 138(2):271-81. PubMed ID: 7828811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein.
    Jackson AL; Pahl PM; Harrison K; Rosamond J; Sclafani RA
    Mol Cell Biol; 1993 May; 13(5):2899-908. PubMed ID: 8474449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells.
    Heidenreich E; Eisler H; Steinboeck F
    Mutat Res; 2006 Jan; 593(1-2):187-95. PubMed ID: 16154164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMR analysis of a cell division cycle mutant of Saccharomyces cerevisiae.
    Gillies RJ; Benoit AG
    Biochim Biophys Acta; 1983 Jun; 762(3):466-70. PubMed ID: 6303444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A probe into nuclear events during the cell cycle of Saccharomyces cerevisiae: studies of folded chromosomes in cdc mutants which arrest in G1.
    Piñon R
    Chromosoma; 1979 Jan; 70(3):337-52. PubMed ID: 371932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of ts mutant cells which arrest in G1/G0 phase at the non-permissive temperature in the presence of appropriate growth factors from a Fischer rat cell line, 3Y1.
    Tanonaka K; Ninomiya-Tsuji J; Ishibashi S; Ide T
    Exp Cell Res; 1986 Aug; 165(2):337-44. PubMed ID: 3522255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle.
    Wei W; Nurse P; Broek D
    Cancer Res; 1993 Apr; 53(8):1867-70. PubMed ID: 8467507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae.
    Hanna DE; Rethinaswamy A; Glover CV
    J Biol Chem; 1995 Oct; 270(43):25905-14. PubMed ID: 7592778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.