These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24186092)

  • 1. Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell.
    Vargas O; Caballero Á; Morales J; Elia GA; Scrosati B; Hassoun J
    Phys Chem Chem Phys; 2013 Dec; 15(47):20444-6. PubMed ID: 24186092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance.
    Li X; Hu Y; Liu J; Lushington A; Li R; Sun X
    Nanoscale; 2013 Dec; 5(24):12607-15. PubMed ID: 24177754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries.
    Sun Q; Wang Z; Zhang Z; Yu Q; Qu Y; Zhang J; Yu Y; Xiang B
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6303-8. PubMed ID: 26894410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries.
    Wang J; Feng CQ; Sun ZQ; Chou SL; Liu HK; Wang JZ
    Sci Rep; 2014 Nov; 4():7030. PubMed ID: 25391220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric papers of graphene-coated Co₃O₄ fibers for high-performance lithium-ion batteries.
    Yang X; Fan K; Zhu Y; Shen J; Jiang X; Zhao P; Luan S; Li C
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):997-1002. PubMed ID: 23320959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceptional performance of a high voltage spinel LiNi0.5Mn1.5O4 cathode in all one dimensional architectures with an anatase TiO2 anode by electrospinning.
    Arun N; Aravindan V; Jayaraman S; Shubha N; Ling WC; Ramakrishna S; Madhavi S
    Nanoscale; 2014 Aug; 6(15):8926-34. PubMed ID: 24965606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the electrochemical performance of the LiMn(2)O(4) hollow microsphere cathode with a LiNi(0.5)Mn(1.5)O(4) coated layer.
    Liu W; Liu J; Chen K; Ji S; Wan Y; Zhou Y; Xue D; Hodgson P; Li Y
    Chemistry; 2014 Jan; 20(3):824-30. PubMed ID: 24339205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
    C OA; Caballero Á; Morales J
    Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode.
    Verrelli R; Scrosati B; Sun YK; Hassoun J
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5206-11. PubMed ID: 24611783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
    Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries.
    Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G
    Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and approaches for high-voltage spinel lithium-ion batteries.
    Kim JH; Pieczonka NP; Yang L
    Chemphyschem; 2014 Jul; 15(10):1940-54. PubMed ID: 24862008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchoring Nanostructured Manganese Fluoride on Few-Layer Graphene Nanosheets as Anode for Enhanced Lithium Storage.
    Rui K; Wen Z; Lu Y; Shen C; Jin J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1819-26. PubMed ID: 26727406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries.
    Xin X; Zhou X; Wu J; Yao X; Liu Z
    ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries.
    Xia F; Hu X; Sun Y; Luo W; Huang Y
    Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.