These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24186297)

  • 1. The ftr cistron of Coprinus cinereus is the structural gene for a multifunctional transport carrier molecule.
    Taj-Aldeen SJ; Moore D
    Curr Genet; 1982 Aug; 5(3):209-13. PubMed ID: 24186297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar transport in Coprinus cinereus.
    Moore D; Devadatham MS
    Biochim Biophys Acta; 1979 Feb; 550(3):515-26. PubMed ID: 33708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of genes which influence allelic recombination in Coprinus cinereus.
    Katy NS; Moore D
    Curr Genet; 1980 Feb; 1(2):103-12. PubMed ID: 24190834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of hexose transport mutants in L6 rat myoblasts.
    D'Amore T; Duronio V; Cheung MO; Lo TC
    J Cell Physiol; 1986 Jan; 126(1):29-36. PubMed ID: 3944196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus.
    Zolan ME; Tremel CJ; Pukkila PJ
    Genetics; 1988 Oct; 120(2):379-87. PubMed ID: 3197952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen bonding requirements for the insulin-sensitive sugar transport system of rat adipocytes.
    Rees WD; Holman GD
    Biochim Biophys Acta; 1981 Aug; 646(2):251-60. PubMed ID: 7028115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants.
    Cummings WJ; Celerin M; Crodian J; Brunick LK; Zolan ME
    Curr Genet; 1999 Dec; 36(6):371-82. PubMed ID: 10654091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochalasin B as a probe for the two hexose-transport systems in rat L6 myoblasts.
    Chen SR; Lo TC
    Biochem J; 1988 Apr; 251(1):63-72. PubMed ID: 3390161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic characteristics and regulation of hexose transport in a galactokinase-negative Chinese hamster fibroblast cell line: a good model for studies on sugar transport in cultured mammalian cells.
    Germinario RJ; Lakshmi TM; Thirion JP
    J Cell Physiol; 1989 Feb; 138(2):300-4. PubMed ID: 2918031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of sugar transport in chick embryo fibroblasts by hexose starvation. Evidence for transcriptional regulation of transport.
    Kletzien RF; Perdue JF
    J Biol Chem; 1975 Jan; 250(2):593-600. PubMed ID: 1167542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome dynamics in rad12 mutants of Coprinus cinereus.
    Ramesh MA; Zolan ME
    Chromosoma; 1995 Nov; 104(3):189-202. PubMed ID: 8529459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active renal hexose transport. Structural requirements.
    Kleinzeller A; McAvoy EM; McKibbin RD
    Biochim Biophys Acta; 1980 Aug; 600(2):513-29. PubMed ID: 7407126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coprinus cinereus rad50 mutants reveal an essential structural role for Rad50 in axial element and synaptonemal complex formation, homolog pairing and meiotic recombination.
    Acharya SN; Many AM; Schroeder AP; Kennedy FM; Savytskyy OP; Grubb JT; Vincent JA; Friedle EA; Celerin M; Maillet DS; Palmerini HJ; Greischar MA; Moncalian G; Williams RS; Tainer JA; Zolan ME
    Genetics; 2008 Dec; 180(4):1889-907. PubMed ID: 18940790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b560 subunit of succinate dehydrogenase complex (Complex II).
    Ito Y; Muraguchi H; Seshime Y; Oita S; Yanagi SO
    Mol Genet Genomics; 2004 Oct; 272(3):328-35. PubMed ID: 15365819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar.
    McDonald TP; Walmsley AR; Henderson PJ
    J Biol Chem; 1997 Jun; 272(24):15189-99. PubMed ID: 9182541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose. Implications for a proposed mechanism of H+/lactose symport.
    Johnson JL; Brooker RJ
    J Biol Chem; 1999 Feb; 274(7):4074-81. PubMed ID: 9933600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two b1 alleles from within the A mating-type of the basidiomycete Coprinus cinereus.
    Gieser PT; May G
    Gene; 1994 Sep; 146(2):167-76. PubMed ID: 8076815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic evidence for surface residues influencing the active site of Coprinus cinereus peroxidase: analysis of the pH dependence of G154E, P90H and P90H-G154E substrate entrance mutants.
    Di Cerbo P; Welinder KG; Schiødt CB
    Biochim Biophys Acta; 2001 Jan; 1544(1-2):18-27. PubMed ID: 11341913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.