BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24186341)

  • 1. Mechanism for formation of the secondary wall thickening in tracheary elements: Microtubules and microfibrils of tracheary elements of Pisum sativum L. and Commelina communis L. and the effects of amiprophosmethyl.
    Hogetsu T
    Planta; 1991 Sep; 185(2):190-200. PubMed ID: 24186341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements.
    Roberts AW; Frost AO; Roberts EM; Haigler CH
    Protoplasma; 2004 Dec; 224(3-4):217-29. PubMed ID: 15614483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements.
    Salnikov VV; Grimson MJ; Delmer DP; Haigler CH
    Phytochemistry; 2001 Jul; 57(6):823-33. PubMed ID: 11423134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging cell wall architecture in single Zinnia elegans tracheary elements.
    Lacayo CI; Malkin AJ; Holman HY; Chen L; Ding SY; Hwang MS; Thelen MP
    Plant Physiol; 2010 Sep; 154(1):121-33. PubMed ID: 20592039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis.
    Vukašinović N; Oda Y; Pejchar P; Synek L; Pečenková T; Rawat A; Sekereš J; Potocký M; Žárský V
    New Phytol; 2017 Feb; 213(3):1052-1067. PubMed ID: 27801942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research note: Deposition patterns of cellulose microfibrils in flange wall ingrowths of transfer cells indicate clear parallels with those of secondary wall thickenings.
    Talbot MJ; Wasteneys G; McCurdy DW; Offler CE
    Funct Plant Biol; 2007 May; 34(4):307-313. PubMed ID: 32689357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium sp.
    Giddings TH; Staehelin LA
    Planta; 1988 Jan; 173(1):22-30. PubMed ID: 24226174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development.
    Schneider R; Tang L; Lampugnani ER; Barkwill S; Lathe R; Zhang Y; McFarlane HE; Pesquet E; Niittyla T; Mansfield SD; Zhou Y; Persson S
    Plant Cell; 2017 Oct; 29(10):2433-2449. PubMed ID: 28947492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cell biology of secondary cell wall biosynthesis.
    Meents MJ; Watanabe Y; Samuels AL
    Ann Bot; 2018 May; 121(6):1107-1125. PubMed ID: 29415210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma-membrane rosettes involved in localized wall thickening during xylem vessel formation of Lepidium sativum L.
    Herth W
    Planta; 1985 May; 164(1):12-21. PubMed ID: 24249494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.
    Derbyshire P; Ménard D; Green P; Saalbach G; Buschmann H; Lloyd CW; Pesquet E
    Plant Cell; 2015 Oct; 27(10):2709-26. PubMed ID: 26432860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.
    Burk DH; Ye ZH
    Plant Cell; 2002 Sep; 14(9):2145-60. PubMed ID: 12215512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracheid differentiation in tobacco pith cultures.
    Cronshaw J
    Planta; 1966 Mar; 72(1):78-90. PubMed ID: 24554159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE FINE STRUCTURE OF DIFFERENTIATING XYLEM ELEMENTS.
    Cronshaw J; Bouck GB
    J Cell Biol; 1965 Mar; 24(3):415-31. PubMed ID: 19866645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The life of phi: the development of phi thickenings in roots of the orchids of the genus Miltoniopsis.
    Idris NA; Collings DA
    Planta; 2015 Feb; 241(2):489-506. PubMed ID: 25377920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.
    Zhong R; Ye ZH
    Plant Cell Physiol; 2015 Feb; 56(2):195-214. PubMed ID: 25294860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization.
    Himmelspach R; Williamson RE; Wasteneys GO
    Plant J; 2003 Nov; 36(4):565-75. PubMed ID: 14617086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SEM Studies on Vessels in Ferns. XV. Selected Rosette Epiphytes (Aspleniaceae, Elaphoglossaceae, Vittariaceae).
    Schneider EL; Carlquist S
    Int J Plant Sci; 1999 Sep; 160(5):1013-1020. PubMed ID: 10506477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall.
    Wightman R; Turner SR
    Plant J; 2008 Jun; 54(5):794-805. PubMed ID: 18266917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose microfibril orientation in Oocystis solitaria: proof that microtubules control the alignment of the terminal complexes.
    Quader H
    J Cell Sci; 1986 Jul; 83():223-34. PubMed ID: 3805142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.