These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24186536)

  • 21. Transport of arginine and aspartic Acid into isolated barley mesophyll vacuoles.
    Martinoia E; Thume M; Vogt E; Rentsch D; Dietz KJ
    Plant Physiol; 1991 Oct; 97(2):644-50. PubMed ID: 16668447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of high temperatures on leaf cells of Valerianella: relative heat stability of the tonoplast membrane of mesophyll vacuoles.
    Weigel HJ
    Planta; 1983 Nov; 159(5):398-403. PubMed ID: 24258291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dipeptide transport in barley mesophyll vacuoles.
    Jamaï A; Gaillard C; Delrot S; Martinoia E
    Planta; 1995; 196(3):430-3. PubMed ID: 7647680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na+/H+-transporter, H+-pumps and an aquaporin in light and heavy tonoplast membranes from organic acid and NaCl accumulating vacuoles of the annual facultative CAM plant and halophyte Mesembryanthemum crystallinum L.
    Epimashko S; Fischer-Schliebs E; Christian AL; Thiel G; Lüttge U
    Planta; 2006 Sep; 224(4):944-51. PubMed ID: 16575596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solute transport across the tonoplast of barely mesophyll vacuoles: Mg2+ determines the specificity, and ATP lipophilic amino acids the activity of the amino acid carrier.
    Dietz KJ; Klughammer B; Lang B; Thume M
    J Membr Biol; 1994 Jan; 137(2):151-8. PubMed ID: 8006953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polypeptide pattern and enzymic character of vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Martinoia E; Schmitt JM; Hincha DK; Heber U
    Planta; 1986 Nov; 169(3):345-55. PubMed ID: 24232646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Citrate transport into barley mesophyll vacuoles - comparison with malate-uptake activity.
    Rentsch D; Martinoia E
    Planta; 1991 Jul; 184(4):532-7. PubMed ID: 24194244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tonoplast stability and survival of isolated vacuoles in different buffers.
    De Leon JL; Daie J; Wyse R
    Plant Physiol; 1988 Oct; 88(2):251-4. PubMed ID: 16666290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uptake of Phenylalanine into Isolated Barley Vacuoles Is Driven by Both Tonoplast Adenosine Triphosphatase and Pyrophosphatase : Evidence for a Hydrophobic l-Amino Acid Carrier System.
    Homeyer U; Litek K; Huchzermeyer B; Schultz G
    Plant Physiol; 1989 Apr; 89(4):1388-93. PubMed ID: 16666714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sucrose transport into vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Heber U
    Planta; 1984 Nov; 161(6):562-8. PubMed ID: 24253927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gibberellic-acid-stimulated Ca(2+) accumulation in endoplasmic reticulum of barley aleurone: Ca(2+) transport and steady-state levels.
    Bush DS; Biswas AK; Jones RL
    Planta; 1989 Jun; 178(3):411-20. PubMed ID: 24212909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. separation and Immunological Characterization of Membrane Fractions from Barley Roots.
    Dupont FM; Tanaka CK; Hurkman WJ
    Plant Physiol; 1988 Mar; 86(3):717-24. PubMed ID: 16665976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The tonoplast-associated citrate binding protein (CBP) of Hevea brasiliensis. Photoaffinity labeling, purification, and cloning of the corresponding gene.
    Rentsch D; Görlach J; Vogt E; Amrhein N; Martinoia E
    J Biol Chem; 1995 Dec; 270(51):30525-31. PubMed ID: 8530484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of phenylalanine into vacuoles isolated from barley mesophyll protoplasts.
    Homeyer U; Schultz G
    Planta; 1988 Dec; 176(3):378-82. PubMed ID: 24220866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstitution into liposomes of the glutamine/amino acid transporter from renal cell plasma membrane: functional characterization, kinetics and activation by nucleotides.
    Oppedisano F; Pochini L; Galluccio M; Cavarelli M; Indiveri C
    Biochim Biophys Acta; 2004 Dec; 1667(2):122-31. PubMed ID: 15581847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast.
    Yamaguchi H; Nishizawa NK; Nakanishi H; Mori S
    J Exp Bot; 2002 Apr; 53(369):727-35. PubMed ID: 11886893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton transport in isolated vacuoles from corn coleoptiles.
    Mandala S; Taiz L
    Plant Physiol; 1985 May; 78(1):104-9. PubMed ID: 16664181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles.
    Ramos MS; Abele R; Nagy R; Grotemeyer MS; Tampé R; Rentsch D; Martinoia E
    J Exp Bot; 2011 Apr; 62(7):2403-10. PubMed ID: 21282327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination.
    Dietz KJ; Heber U; Mimura T
    Biochim Biophys Acta; 1998 Aug; 1373(1):87-92. PubMed ID: 9733929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solubilization and reconstitution of the oat root vacuolar h/ca exchanger.
    Schumaker KS; Sze H
    Plant Physiol; 1990 Feb; 92(2):340-5. PubMed ID: 16667279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.