These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas. Khodadad CL; Foster JS PLoS One; 2012; 7(5):e38229. PubMed ID: 22662280 [TBL] [Abstract][Full Text] [Related]
3. Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia. Palmisano AC; Summons RE; Cronin SE; Des Marais DJ J Phycol; 1989; 25():655-61. PubMed ID: 11542174 [TBL] [Abstract][Full Text] [Related]
4. Anoxygenic photosynthesis and nitrogen fixation by a microbial mat community in a bahamian hypersaline lagoon. Pinckney JL; Paerl HW Appl Environ Microbiol; 1997 Feb; 63(2):420-6. PubMed ID: 16535506 [TBL] [Abstract][Full Text] [Related]
6. Diazotrophic microbial community of coastal microbial mats of the southern North Sea. Bauersachs T; Compaoré J; Severin I; Hopmans EC; Schouten S; Stal LJ; Sinninghe Damsté JS Geobiology; 2011 Jul; 9(4):349-59. PubMed ID: 21535363 [TBL] [Abstract][Full Text] [Related]
7. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Myshrall KL; Mobberley JM; Green SJ; Visscher PT; Havemann SA; Reid RP; Foster JS Geobiology; 2010 Sep; 8(4):337-54. PubMed ID: 20491947 [TBL] [Abstract][Full Text] [Related]
8. N2-Fixation in Cyanobacterial Mats from Ponds on the McMurdo Ice Shelf, Antarctica. Fernández-Valiente E; Quesada A; Howard-Williams C; Hawes I Microb Ecol; 2001 Oct; 42(3):338-349. PubMed ID: 12024259 [TBL] [Abstract][Full Text] [Related]
9. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). Fernández-Valiente E; Camacho A; Rochera C; Rico E; Vincent WF; Quesada A FEMS Microbiol Ecol; 2007 Feb; 59(2):377-85. PubMed ID: 17069622 [TBL] [Abstract][Full Text] [Related]
10. Microbial Mats of the McMurdo Dry Valleys, Antarctica: Oases of Biological Activity in a Very Cold Desert. Sohm JA; Niederberger TD; Parker AE; Tirindelli J; Gunderson T; Cary SC; Capone DG; Carpenter EJ Front Microbiol; 2020; 11():537960. PubMed ID: 33193125 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale petrographic and geochemical insights on the origin of the Palaeoproterozoic stromatolitic phosphorites from Aravalli Supergroup, India. Papineau D; De Gregorio B; Fearn S; Kilcoyne D; McMahon G; Purohit R; Fogel M Geobiology; 2016 Jan; 14(1):3-32. PubMed ID: 26490161 [TBL] [Abstract][Full Text] [Related]
12. Hypersaline cyanobacterial mats as indicators of elevated tropical hurricane activity and associated climate change. Paerl HW; Steppe TF; Buchan KC; Potts M Ambio; 2003 Mar; 32(2):87-90. PubMed ID: 12733791 [TBL] [Abstract][Full Text] [Related]
13. Light dependency of nitrogen fixation in a coastal cyanobacterial mat. Severin I; Stal LJ ISME J; 2008 Oct; 2(10):1077-88. PubMed ID: 18563189 [TBL] [Abstract][Full Text] [Related]
14. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Sallstedt T; Bengtson S; Broman C; Crill PM; Canfield DE Geobiology; 2018 Mar; 16(2):139-159. PubMed ID: 29380943 [TBL] [Abstract][Full Text] [Related]
15. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat. Haas S; de Beer D; Klatt JM; Fink A; Rench RM; Hamilton TL; Meyer V; Kakuk B; Macalady JL Front Microbiol; 2018; 9():858. PubMed ID: 29755448 [TBL] [Abstract][Full Text] [Related]
16. Modern stromatolite phototrophic communities: a comparative study of procaryote and eucaryote phototrophs using variable chlorophyll fluorescence. Perkins RG; Mouget JL; Kromkamp JC; Stolz J; Pamela Reid R FEMS Microbiol Ecol; 2012 Dec; 82(3):584-96. PubMed ID: 22671029 [TBL] [Abstract][Full Text] [Related]
17. Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities. Paerl HW; Bebout BM; Joye SB; Des Marais DJ Limnol Oceanogr; 1993; 38(6):1150-61. PubMed ID: 11539296 [TBL] [Abstract][Full Text] [Related]
18. Organic geochemical studies of modern microbial mats from Shark Bay: Part I: Influence of depth and salinity on lipid biomarkers and their isotopic signatures. Pagès A; Grice K; Ertefai T; Skrzypek G; Jahnert R; Greenwood P Geobiology; 2014 Sep; 12(5):469-87. PubMed ID: 25039712 [TBL] [Abstract][Full Text] [Related]
19. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Lee JZ; Burow LC; Woebken D; Everroad RC; Kubo MD; Spormann AM; Weber PK; Pett-Ridge J; Bebout BM; Hoehler TM Front Microbiol; 2014; 5():61. PubMed ID: 24616716 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen export from intertidal cyanobacterial mats: sources, fluxes and the influence of community composition. Hoffmann D; Maldonado J; Wojciechowski MF; Garcia-Pichel F Environ Microbiol; 2015 Oct; 17(10):3738-53. PubMed ID: 25580666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]