BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24186794)

  • 1. Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles.
    Faulkner IJ; Rubery PH
    Planta; 1992 Mar; 186(4):618-25. PubMed ID: 24186794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin carriers in Cucurbita vesicles : III. Specificity, with particular reference to 1-naphthylacetic acid.
    Sabater M; Rubery PH
    Planta; 1987 Aug; 171(4):514-8. PubMed ID: 24225714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auxin transport in membrane vesicles from Cucurbita pepo L.
    Hertel R; Lomax TL; Briggs WR
    Planta; 1983 Apr; 157(3):193-201. PubMed ID: 24264147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of auxin transport by aminopeptidases and endogenous flavonoids.
    Murphy A; Peer WA; Taiz L
    Planta; 2000 Aug; 211(3):315-24. PubMed ID: 10987549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium deficiency and auxin transport in Cucurbita pepo L. seedlings.
    Allan AC; Rubery PH
    Planta; 1991 Mar; 183(4):604-12. PubMed ID: 24193855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytotropin-binding sites and auxin transport in Cucurbita pepo: evidence for two recognition sites.
    Michalke W; Katekar GF; Geissler AE
    Planta; 1992 May; 187(2):254-60. PubMed ID: 24178053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin carriers in Cucurbita vesicles : II. Evidence that carrier-mediated routes of both indole-3-acetic acid influx and efflux are electroimpelled.
    Sabater M; Rubery PH
    Planta; 1987 Aug; 171(4):507-13. PubMed ID: 24225713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Bases for the Loss of Basipetal IAA Transport with Advancing Physiological Age in Etiolated Helianthus Hypocotyls: Changes in IAA Movement, Net IAA Uptake, and Phytotropin Binding.
    Suttle JC
    Plant Physiol; 1991 Jul; 96(3):875-80. PubMed ID: 16668268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis.
    Jensen PJ; Hangarter RP; Estelle M
    Plant Physiol; 1998 Feb; 116(2):455-62. PubMed ID: 9489005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic Orientation of the Naphthylphthalamic Acid-Binding Protein in Zucchini Plasma Membrane Vesicles.
    Dixon MW; Jacobson JA; Cady CT; Muday GK
    Plant Physiol; 1996 Sep; 112(1):421-432. PubMed ID: 12226399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls.
    Butler JH; Hu S; Brady SR; Dixon MW; Muday GK
    Plant J; 1998 Feb; 13(3):291-301. PubMed ID: 11536873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of basipetal auxin transport and lateral auxin movement in rooting and growth of etiolated lupin hypocotyls.
    López Nicolás JI; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2004 Jun; 121(2):294-304. PubMed ID: 15153197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The actin cytoskeleton may control the polar distribution of an auxin transport protein.
    Muday GK; Hu S; Brady SR
    Gravit Space Biol Bull; 2000 Jun; 13(2):75-83. PubMed ID: 11543284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin uptake and action of N-1-naphthylphthalamic acid in corn coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 Jan; 151(1):15-25. PubMed ID: 24301665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in indole-3-acetic acid transport and its relationship with growth in etiolated lupin hypocotyls.
    Nicolás JI; Acosta M; Sánchez-Bravo J
    J Plant Physiol; 2007 Jul; 164(7):851-60. PubMed ID: 16904231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls.
    Suttle JC
    Plant Physiol; 1988 Nov; 88(3):795-9. PubMed ID: 16666386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotropins: receptors and endogenous ligands.
    Rubery PH
    Symp Soc Exp Biol; 1990; 44():119-46. PubMed ID: 2130510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-1-Naphthylphthalamic Acid-Binding Protein Is an Integral Membrane Protein.
    Bernasconi P; Patel BC; Reagan JD; Subramanian MV
    Plant Physiol; 1996 Jun; 111(2):427-432. PubMed ID: 12226298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.