These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24186794)

  • 21. Do phytotropins inhibit auxin efflux by impairing vesicle traffic?
    Petrásek J; Cerná A; Schwarzerová K; Elckner M; Morris DA; Zazímalová E
    Plant Physiol; 2003 Jan; 131(1):254-63. PubMed ID: 12529533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses.
    Effendi Y; Jones AM; Scherer GF
    J Exp Bot; 2013 Nov; 64(16):5065-74. PubMed ID: 24052532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneity of auxin-accumulating membrane vesicles from Cucurbita and Zea: a possible reflection of cell polarity.
    Lützelschwab M; Asard H; Ingold U; Hertel R
    Planta; 1989 Mar; 177(3):304-11. PubMed ID: 24212422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence supporting a model of voltage-dependent uptake of auxin into Cucurbita vesicles.
    Benning C
    Planta; 1986 Oct; 169(2):228-37. PubMed ID: 24232555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bisulfite interacts with binding sites of the auxin-transport inhibitor N-1-naphthylphthalamic acid.
    Thein M; Michalke W
    Planta; 1988 Dec; 176(3):343-50. PubMed ID: 24220862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auxin binding to subcellular fractions from Cucurbita hypocotyls: In vitro evidence for an auxin transport carrier.
    Jacobs M; Hertel R
    Planta; 1978 Jan; 142(1):1-10. PubMed ID: 24407991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid : In-vitro binding to particulate cell fractions and action on auxin transport in corn coleoptiles.
    Thomson KS; Hertel R; Müller S; Tavares JE
    Planta; 1973 Dec; 109(4):337-52. PubMed ID: 24474210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid.
    Johnson CF; Morris DA
    Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The specificity of carrier-mediated auxin transport by suspension-cultured crown gall cells.
    Rubery PH
    Planta; 1977 Jan; 135(3):275-83. PubMed ID: 24420094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a Single Naphthylphthalamic Acid Binding Site on the Zucchini Plasma Membrane.
    Muday GK; Brunn SA; Haworth P; Subramanian M
    Plant Physiol; 1993 Oct; 103(2):449-456. PubMed ID: 12231953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 5'-Azido-N-1-Napthylphthalamic Acid, a Photolabile Analog of N-1-Naphthylphthalamic Acid : Synthesis and Binding Properties in Curcurbita pepo L.
    Voet JG; Howley KS; Shumsky JS
    Plant Physiol; 1987 Sep; 85(1):22-5. PubMed ID: 16665662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological evidence that the primary site of auxin action in maize coleoptiles is an intracellular site.
    Vesper MJ; Kuss CL
    Planta; 1990 Nov; 182(4):486-91. PubMed ID: 24197367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulation by auxin of phospholipase A in membrane vesicles from an auxin-sensitive tissue is mediated by an auxin receptor.
    André B; Scherer GF
    Planta; 1991 Sep; 185(2):209-14. PubMed ID: 24186343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-vitro binding of morphactins and 1-N-naphthylphthalamic acid in corn coleoptiles and their effects on auxin transport.
    Thomson KS; Leopold AC
    Planta; 1974 Sep; 115(3):259-70. PubMed ID: 24458888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development.
    Hakman I; Hallberg H; Palovaara J
    Tree Physiol; 2009 Apr; 29(4):483-96. PubMed ID: 19203973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls.
    Nagashima A; Uehara Y; Sakai T
    Plant Cell Physiol; 2008 Aug; 49(8):1250-5. PubMed ID: 18556728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auxin and Gibberellins Are Required for the Receptor-Like Kinase ERECTA Regulated Hypocotyl Elongation in Shade Avoidance in Arabidopsis.
    Du J; Jiang H; Sun X; Li Y; Liu Y; Sun M; Fan Z; Cao Q; Feng L; Shang J; Shu K; Liu J; Yang F; Liu W; Yong T; Wang X; Yuan S; Yu L; Liu C; Yang W
    Front Plant Sci; 2018; 9():124. PubMed ID: 29467786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids.
    Smith AP; Nourizadeh SD; Peer WA; Xu J; Bandyopadhyay A; Murphy AS; Goldsbrough PB
    Plant J; 2003 Nov; 36(4):433-42. PubMed ID: 14617075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5'-Azido-[3,6-3H2]-1-napthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: identification of a 23-kDa protein from maize coleoptile plasma membranes.
    Zettl R; Feldwisch J; Boland W; Schell J; Palme K
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):480-4. PubMed ID: 11607252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Components of auxin transport in stem segments of Pisum sativum L.
    Davies PJ; Rubery PH
    Planta; 1978 Jan; 142(2):211-9. PubMed ID: 24408105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.