BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24186940)

  • 1. Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow.
    Brereton NJ; Pitre FE; Shield I; Hanley SJ; Ray MJ; Murphy RJ; Karp A
    Tree Physiol; 2014 Nov; 34(11):1252-62. PubMed ID: 24186940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic improvement of willow for bioenergy and biofuels.
    Karp A; Hanley SJ; Trybush SO; Macalpine W; Pei M; Shield I
    J Integr Plant Biol; 2011 Feb; 53(2):151-65. PubMed ID: 21205181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): effects on shoot growth and nitrogen economy.
    Weih M
    Tree Physiol; 2009 Dec; 29(12):1479-90. PubMed ID: 19793729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic strategies for dissecting complex traits in biomass willows (Salix spp.).
    Hanley SJ; Karp A
    Tree Physiol; 2014 Nov; 34(11):1167-80. PubMed ID: 24218244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a sink-source interaction model for the growth of short-rotation coppice willow and in silico exploration of genotype×environment effects.
    Cerasuolo M; Richter GM; Richard B; Cunniff J; Girbau S; Shield I; Purdy S; Karp A
    J Exp Bot; 2016 Feb; 67(3):961-77. PubMed ID: 26663471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing nitrogen economy under drought: increased leaf nitrogen is an acclimation to water stress in willow (Salix spp.).
    Weih M; Bonosi L; Ghelardini L; Rönnberg-Wästljung AC
    Ann Bot; 2011 Nov; 108(7):1347-53. PubMed ID: 21896572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios.
    Wang D; Jaiswal D; LeBauer DS; Wertin TM; Bollero GA; Leakey AD; Long SP
    Plant Cell Environ; 2015 Sep; 38(9):1850-65. PubMed ID: 25963097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of biomass production in hybrid willows and prediction of field performance from pot studies.
    Weih M; Nordh NE
    Tree Physiol; 2005 Sep; 25(9):1197-206. PubMed ID: 15996963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies.
    Weih M; Rönnberg-Wästjung AC
    Tree Physiol; 2007 Nov; 27(11):1551-9. PubMed ID: 17669744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane production from green and woody biomass using short rotation willow genotypes for bioenergy generation.
    Kakuk B; Bagi Z; Rákhely G; Maróti G; Dudits D; Kovács KL
    Bioresour Technol; 2021 Aug; 333():125223. PubMed ID: 33940504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids.
    Serapiglia MJ; Gouker FE; Smart LB
    BMC Plant Biol; 2014 Mar; 14():74. PubMed ID: 24661804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N.
    Malagoli P; Laine P; Rossato L; Ourry A
    Ann Bot; 2005 Apr; 95(5):853-61. PubMed ID: 15701662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments.
    Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M
    J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis.
    Dudits D; Török K; Cseri A; Paul K; Nagy AV; Nagy B; Sass L; Ferenc G; Vankova R; Dobrev P; Vass I; Ayaydin F
    Plant Physiol; 2016 Mar; 170(3):1504-23. PubMed ID: 26729798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production.
    Yang J; Udvardi M
    J Exp Bot; 2018 Feb; 69(4):855-865. PubMed ID: 29444307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling.
    Girondé A; Etienne P; Trouverie J; Bouchereau A; Le Cahérec F; Leport L; Orsel M; Niogret MF; Nesi N; Carole D; Soulay F; Masclaux-Daubresse C; Avice JC
    BMC Plant Biol; 2015 Feb; 15():59. PubMed ID: 25848818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen recycling and flowering time in perennial bioenergy crops.
    Schwartz C; Amasino R
    Front Plant Sci; 2013; 4():76. PubMed ID: 23626592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem injection of 15N-NH4NO3 into mature Sitka spruce (Picea sitchensis).
    Nair R; Weatherall A; Perks M; Mencuccini M
    Tree Physiol; 2014 Oct; 34(10):1130-40. PubMed ID: 25335951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High yielding biomass genotypes of willow (
    Cunniff J; Purdy SJ; Barraclough TJ; Castle M; Maddison AL; Jones LE; Shield IF; Gregory AS; Karp A
    Biomass Bioenergy; 2015 Sep; 80():114-127. PubMed ID: 26339128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.
    Salmon J; Ward SP; Hanley SJ; Leyser O; Karp A
    Plant Biotechnol J; 2014 May; 12(4):480-91. PubMed ID: 24393130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.