BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24187053)

  • 1. Cystoid macular oedema and epiretinal membrane formation during progression of chloroquine retinopathy after drug cessation.
    Kellner S; Weinitz S; Farmand G; Kellner U
    Br J Ophthalmol; 2014 Feb; 98(2):200-6. PubMed ID: 24187053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence.
    Kellner S; Weinitz S; Kellner U
    Br J Ophthalmol; 2009 Nov; 93(11):1444-7. PubMed ID: 19692385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography.
    Kellner U; Kellner S; Weinitz S
    Doc Ophthalmol; 2008 Mar; 116(2):119-27. PubMed ID: 18080820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progression of hydroxychloroquine toxic effects after drug therapy cessation: new evidence from multimodal imaging.
    Mititelu M; Wong BJ; Brenner M; Bryar PJ; Jampol LM; Fawzi AA
    JAMA Ophthalmol; 2013 Sep; 131(9):1187-97. PubMed ID: 23887202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal toxicity associated with hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation of therapy.
    Michaelides M; Stover NB; Francis PJ; Weleber RG
    Arch Ophthalmol; 2011 Jan; 129(1):30-9. PubMed ID: 21220626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine.
    Kellner U; Renner AB; Tillack H
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3531-8. PubMed ID: 16877425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of retinal thickness and fundus-related microperimetry with visual acuity in uveitic macular oedema.
    Roesel M; Heimes B; Heinz C; Henschel A; Spital G; Heiligenhaus A
    Acta Ophthalmol; 2011 Sep; 89(6):533-7. PubMed ID: 20003108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of fundus autofluorescence with spectral-domain optical coherence tomography and vision in diabetic macular edema.
    Chung H; Park B; Shin HJ; Kim HC
    Ophthalmology; 2012 May; 119(5):1056-65. PubMed ID: 22342014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy.
    Sayegh RG; Simader C; Scheschy U; Montuoro A; Kiss C; Sacu S; Kreil DP; Prünte C; Schmidt-Erfurth U
    Ophthalmology; 2011 Sep; 118(9):1844-51. PubMed ID: 21496928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LONGITUDINAL CHANGES IN EYES WITH HYDROXYCHLOROQUINE RETINAL TOXICITY.
    Allahdina AM; Chen KG; Alvarez JA; Wong WT; Chew EY; Cukras CA
    Retina; 2019 Mar; 39(3):473-484. PubMed ID: 30741731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of macular microstructure by spectral-domain optical coherence tomography before and after silicone oil removal.
    Bae SH; Hwang JS; Yu HG
    Retina; 2012 Oct; 32(9):1874-83. PubMed ID: 22466462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundus Autofluorescence and SD-OCT Document Rapid Progression in Autosomal Dominant Vitreoretinochoroidopathy (ADVIRC) Associated with a c.256G > A Mutation in BEST1.
    Kellner S; Stöhr H; Fiebig B; Weinitz S; Farmand G; Kellner U; Weber BH
    Ophthalmic Genet; 2016 Jun; 37(2):201-8. PubMed ID: 26771239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal imaging of dry age-related macular degeneration.
    Forte R; Querques G; Querques L; Massamba N; Le Tien V; Souied EH
    Acta Ophthalmol; 2012 Jun; 90(4):e281-7. PubMed ID: 22269083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uveitic macular oedema: correlation between optical coherence tomography patterns with visual acuity and fluorescein angiography.
    Tran TH; de Smet MD; Bodaghi B; Fardeau C; Cassoux N; Lehoang P
    Br J Ophthalmol; 2008 Jul; 92(7):922-7. PubMed ID: 18577643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microperimetric correlations of autofluorescence and optical coherence tomography imaging in dry age-related macular degeneration.
    Querques L; Querques G; Forte R; Souied EH
    Am J Ophthalmol; 2012 Jun; 153(6):1110-5. PubMed ID: 22321805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral-domain optical coherence tomography use in macular diseases: a review.
    Wolf S; Wolf-Schnurrbusch U
    Ophthalmologica; 2010; 224(6):333-40. PubMed ID: 20453539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of disease stage on progression of hydroxychloroquine retinopathy.
    Marmor MF; Hu J
    JAMA Ophthalmol; 2014 Sep; 132(9):1105-12. PubMed ID: 24922444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macular appearance after diabetic vitrectomy for fibrovascular proliferation: an optical coherence tomography study.
    Yang CM; Yeh PT; Cheng SF; Yang CH; Chen MS
    Acta Ophthalmol; 2010 Mar; 88(2):193-8. PubMed ID: 19094167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical relevance of quantified fundus autofluorescence in diabetic macular oedema.
    Yoshitake S; Murakami T; Uji A; Unoki N; Dodo Y; Horii T; Yoshimura N
    Eye (Lond); 2015 May; 29(5):662-9. PubMed ID: 25771817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic macular edema: fundus autofluorescence and functional correlations.
    Vujosevic S; Casciano M; Pilotto E; Boccassini B; Varano M; Midena E
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):442-8. PubMed ID: 20720226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.