These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24187166)

  • 1. Development and preliminary testing of a novel wheelchair integrated exercise/ rehabilitation system.
    Hwang B; Jeon D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650347. PubMed ID: 24187166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional modelling of wheelchair contrived with lower limb exoskeleton for right hemiplegic dysfunction.
    Nithyaa AN; Poonguzhali S; Vigneshwari N
    Proc Inst Mech Eng H; 2020 Jul; 234(7):651-659. PubMed ID: 32255733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brief biomechanical analysis on the walking of spinal cord injury patients with a lower limb exoskeleton robot.
    Jung JY; Park H; Yang HD; Chae M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650351. PubMed ID: 24187170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitation for hemiplegia using an upper limb training system based on a force direction.
    Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of activities of daily living (ADLs) in two different one arm drive wheelchairs: a study of individuals/participants with hemiplegia.
    Mandy A; Walton C; Michaelis J
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):108-12. PubMed ID: 24131370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotically-driven orthoses exert proximal-to-distal differential recovery on the lower limbs in children with hemiplegia, early after acquired brain injury.
    Beretta E; Molteni E; Biffi E; Morganti R; Avantaggiato P; Strazzer S
    Eur J Paediatr Neurol; 2018 Jul; 22(4):652-661. PubMed ID: 29650492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of gait training system powered by pneumatic actuator like human musculoskeletal system.
    Yamamoto S; Shibata Y; Imai S; Nobutomo T; Miyoshi T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975452. PubMed ID: 22275650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weight transfer analysis in adults with hemiplegia using ankle foot orthosis.
    Nolan KJ; Yarossi M
    Prosthet Orthot Int; 2011 Mar; 35(1):45-53. PubMed ID: 21515889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addition of intensive repetition of facilitation exercise to multidisciplinary rehabilitation promotes motor functional recovery of the hemiplegic lower limb.
    Kawahira K; Shimodozono M; Ogata A; Tanaka N
    J Rehabil Med; 2004 Jul; 36(4):159-64. PubMed ID: 15370731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheelchair appropriateness in patients with spinal cord injury: a Turkish experience.
    Ekiz T; Ozbudak Demir S; Ozgirgin N
    Spinal Cord; 2014 Dec; 52(12):901-4. PubMed ID: 25112966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Framework for Assessment of the Usability of Lower-Extremity Robotic Exoskeletal Orthoses.
    Bryce TN; Dijkers MP; Kozlowski AJ
    Am J Phys Med Rehabil; 2015 Nov; 94(11):1000-14. PubMed ID: 26098923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary tests of a prototype FES control system for cycling wheelchair rehabilitation.
    Watanabe T; Murakami T; Handa Y
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650484. PubMed ID: 24187301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of a wheelchair education protocol based on practice guidelines for preservation of upper-limb function: a randomized trial.
    Rice LA; Smith I; Kelleher AR; Greenwald K; Boninger ML
    Arch Phys Med Rehabil; 2014 Jan; 95(1):10-19.e11. PubMed ID: 23856151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-robot-interaction control for orthoses with pneumatic soft-actuators--concept and initial trails.
    Baiden D; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650353. PubMed ID: 24187172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke.
    Liu Q; Wang C; Long JJ; Sun T; Duan L; Zhang X; Zhang B; Shen Y; Shang W; Lin Z; Wang Y; Xia J; Wei J; Li W; Wu Z
    J Healthc Eng; 2018; 2018():3867243. PubMed ID: 29736231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic orthoses for body weight-supported treadmill training.
    Winchester P; Querry R
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a parameterizable exoskeleton for training of hand function after stroke.
    Weiss P; Heyer L; Munte TF; Heldmann M; Schweikard A; Maehle E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650505. PubMed ID: 24187320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.