These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 24187168)
1. Measuring the dynamic impedance of the human arm without a force sensor. Dyck M; Tavakoli M IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650349. PubMed ID: 24187168 [TBL] [Abstract][Full Text] [Related]
2. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
3. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot. Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879 [TBL] [Abstract][Full Text] [Related]
4. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation. Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881 [TBL] [Abstract][Full Text] [Related]
5. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study. Chang PH; Kang SH J Neurosci Methods; 2010 May; 189(1):97-112. PubMed ID: 20298718 [TBL] [Abstract][Full Text] [Related]
6. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. Rosati G; Gallina P; Masiero S IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714 [TBL] [Abstract][Full Text] [Related]
7. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement. Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862 [TBL] [Abstract][Full Text] [Related]
8. Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. Lin Y; Qu Q; Lin Y; He J; Zhang Q; Wang C; Jiang Z; Guo F; Jia J Biomed Res Int; 2021; 2021():9972560. PubMed ID: 34195289 [TBL] [Abstract][Full Text] [Related]
9. An identification technique for evaluating body segment parameters in the upper extremity from manipulator-hand contact forces and arm kinematics. Kodek T; Munih M Clin Biomech (Bristol); 2006 Aug; 21(7):710-6. PubMed ID: 16675082 [TBL] [Abstract][Full Text] [Related]
10. A Semi-passive Planar Manipulandum for Upper-Extremity Rehabilitation. Chang CK; Washabaugh EP; Gwozdziowski A; Remy CD; Krishnan C Ann Biomed Eng; 2018 Jul; 46(7):1047-1065. PubMed ID: 29626272 [TBL] [Abstract][Full Text] [Related]
11. Control system design of a 3-DOF upper limbs rehabilitation robot. Denève A; Moughamir S; Afilal L; Zaytoon J Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080 [TBL] [Abstract][Full Text] [Related]
12. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation. Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168 [TBL] [Abstract][Full Text] [Related]
13. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems. Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989 [TBL] [Abstract][Full Text] [Related]
14. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm. El-Gohary M; McNames J IEEE Trans Biomed Eng; 2015 Jul; 62(7):1759-67. PubMed ID: 25700438 [TBL] [Abstract][Full Text] [Related]
15. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping. Erden MS; Billard A IEEE Trans Cybern; 2015 Jun; 45(6):1146-57. PubMed ID: 25148680 [TBL] [Abstract][Full Text] [Related]
16. Differences in knee joint kinematics and forces after posterior cruciate retaining and stabilized total knee arthroplasty. Wünschel M; Leasure JM; Dalheimer P; Kraft N; Wülker N; Müller O Knee; 2013 Dec; 20(6):416-21. PubMed ID: 23578828 [TBL] [Abstract][Full Text] [Related]
17. Robot-assisted assessment of muscle strength. Toigo M; Flück M; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2017 Oct; 14(1):103. PubMed ID: 29020968 [TBL] [Abstract][Full Text] [Related]
18. Analysis of operational comfort in manual tasks using human force manipulability measure. Tanaka Y; Nishikawa K; Yamada N; Tsuji T IEEE Trans Haptics; 2015; 8(1):8-19. PubMed ID: 25415990 [TBL] [Abstract][Full Text] [Related]
19. Flexion-extension motion assistance using an upper limb motion-assist robot based on trajectory estimation of reaching movement. Yano K; Hashimura J; Aoki T; Nishimoto Y Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4599-602. PubMed ID: 19963848 [TBL] [Abstract][Full Text] [Related]
20. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]