These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24187183)

  • 41. A configuration dependent muscle model for the myoelectric control of a transfemoral prosthesis.
    Hoover CD; Fite KB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975480. PubMed ID: 22275678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy-efficient SVM learning control system for biped walking robots.
    Wang L; Liu Z; Chen CL; Zhang Y; Lee S; Chen X
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):831-7. PubMed ID: 24808432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extremum Seeking Control for Model-Free Auto-Tuning of Powered Prosthetic Legs.
    Kumar S; Mohammadi A; Quintero D; Rezazadeh S; Gans N; Gregg RD
    IEEE Trans Control Syst Technol; 2020 Nov; 28(6):2120-2135. PubMed ID: 33041615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Knee model of hydrodynamic lubrication during the gait cycle and the influence of prosthetic joint conformity.
    Pascau A; Guardia B; Puertolas JA; Gómez-Barrena E
    J Orthop Sci; 2009 Jan; 14(1):68-75. PubMed ID: 19214691
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of locomotor adaptations in young children with limb loss in an early prosthetic knee prescription protocol.
    Geil M; Coulter C
    Prosthet Orthot Int; 2014 Feb; 38(1):54-61. PubMed ID: 23685917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantifying dynamic characteristics of human walking for comprehensive gait cycle.
    Mummolo C; Mangialardi L; Kim JH
    J Biomech Eng; 2013 Sep; 135(9):91006. PubMed ID: 23775488
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact dynamics in biped locomotion analysis: two modelling and implementation approaches.
    Addi K; Rodić AD
    Math Biosci Eng; 2010 Jul; 7(3):479-504. PubMed ID: 20578782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomechanical maturation of joint dynamics during early childhood: updated conclusions.
    Samson W; Van Hamme A; Desroches G; Dohin B; Dumas R; Chèze L
    J Biomech; 2013 Sep; 46(13):2258-63. PubMed ID: 23876715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adaptative control of above knee electro-hydraulic prosthesis.
    Wang TK; Ju MS; Tsuei YG
    J Biomech Eng; 1992 Aug; 114(3):421-4. PubMed ID: 1522738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption.
    Rouse EJ; Mooney LM; Martinez-Villalpando EC; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650383. PubMed ID: 24187202
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model.
    Li W; Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2017 Oct; 12(6):065002. PubMed ID: 28748830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-time controller for foot-drop correction by using surface electromyography sensor.
    Al Mashhadany YI; Abd Rahim N
    Proc Inst Mech Eng H; 2013 Apr; 227(4):373-83. PubMed ID: 23637213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stability of an underactuated bipedal gait.
    Mukherjee S; Sangwan V; Taneja A; Seth B
    Biosystems; 2007; 90(2):582-9. PubMed ID: 17307288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unified Phase Variables of Relative Degree Two for Human Locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6262-6267. PubMed ID: 28261013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of restricted vision and knee joint range of motion on gait properties during level walking and stair ascent and descent.
    Demura T; Demura SI
    J Mot Behav; 2011; 43(6):445-50. PubMed ID: 22017503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Single-Joint Implementation of Flow Control: Knee Joint Walking Assistance for Individuals With Mobility Impairment.
    Martinez A; Durrough C; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):934-942. PubMed ID: 32142447
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling and optimal control of an energy-storing prosthetic knee.
    van den Bogert AJ; Samorezov S; Davis BL; Smith WA
    J Biomech Eng; 2012 May; 134(5):051007. PubMed ID: 22757495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees.
    Jia X; Zhang M; Li X; Lee WC
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):630-5. PubMed ID: 15878224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.