These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24187186)

  • 1. Development and control of a lower extremity assistive device (LEAD) for gait rehabilitation.
    Shen B; Li J; Bai F; Chew CM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650367. PubMed ID: 24187186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative kinematic and electromyographic assessment of clinician- and device-assisted sit-to-stand transfers in patients with stroke.
    Burnfield JM; McCrory B; Shu Y; Buster TW; Taylor AP; Goldman AJ
    Phys Ther; 2013 Oct; 93(10):1331-41. PubMed ID: 23641027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.
    Olivier J; Bouri M; Ortlieb A; Bleuler H; Clavel R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650495. PubMed ID: 24187310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different unstable sole construction on kinematics and muscle activity of lower limb.
    Gu Y; Lu Y; Mei Q; Li J; Ren J
    Hum Mov Sci; 2014 Aug; 36():46-57. PubMed ID: 24929612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study.
    Mulroy SJ; Klassen T; Gronley JK; Eberly VJ; Brown DA; Sullivan KJ
    Phys Ther; 2010 Feb; 90(2):209-23. PubMed ID: 20022996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic and electromyographic analyses of normal and device-assisted sit-to-stand transfers.
    Burnfield JM; Shu Y; Buster TW; Taylor AP; McBride MM; Krause ME
    Gait Posture; 2012 Jul; 36(3):516-22. PubMed ID: 22727735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip abductor control in walking following stroke -- the immediate effect of canes, taping and TheraTogs on gait.
    Maguire C; Sieben JM; Frank M; Romkes J
    Clin Rehabil; 2010 Jan; 24(1):37-45. PubMed ID: 19906767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of an Assistive Control Approach Applied in an Active Knee Orthosis Plus Walker for Post-Stroke Gait Rehabilitation.
    Villa-Parra AC; Lima J; Delisle-Rodriguez D; Vargas-Valencia L; Frizera-Neto A; Bastos T
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait mode recognition and control for a portable-powered ankle-foot orthosis.
    David Li Y; Hsiao-Wecksler ET
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650373. PubMed ID: 24187192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in normal and perturbed walking kinematics between male and female athletes.
    Hurd WJ; Chmielewski TL; Axe MJ; Davis I; Snyder-Mackler L
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):465-72. PubMed ID: 15182981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design And Experiment Of A Passive Sit-To-Stand And Walking (STSW) Assistance Device For The Elderly.
    Kim SW; Song J; Suh S; Lee W; Kang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1781-1784. PubMed ID: 30440739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
    Dembia CL; Silder A; Uchida TK; Hicks JL; Delp SL
    PLoS One; 2017; 12(7):e0180320. PubMed ID: 28700630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical parameters in lower limbs during natural walking and Nordic walking at different speeds.
    Dziuba AK; Żurek G; Garrard I; Wierzbicka-Damska I
    Acta Bioeng Biomech; 2015; 17(1):95-101. PubMed ID: 25951842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Semi-Wearable Robotic Device for Sit-to-Stand Assistance.
    Zheng H; Shen T; Afsar MR; Kang I; Young AJ; Shen X
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():204-209. PubMed ID: 31374631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower limb rehabilitation using multimodal measurement of sit-to-stand and stand-to-sit task.
    Bhardwaj S; Khan AA; Muzammil M
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):438-445. PubMed ID: 31288589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of Muscular Activity During Gait Between Walking Sticks and a Walker in Patients With Adult Degenerative Scoliosis.
    Haddas R; Lieberman IH; Kakar RS
    Spine Deform; 2019 May; 7(3):454-466. PubMed ID: 31053316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.