These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24187186)

  • 21. Applicability of a new robotic walking aid in a patient with cerebral palsy. Case report.
    Smania N; Gandolfi M; Marconi V; Calanca A; Geroin C; Piazza S; Bonetti P; Fiorini P; Cosentino A; Capelli C; Conte D; Bendinelli M; Munari D; Ianes P; Fiaschi A; Picelli A
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):147-53. PubMed ID: 22543558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of toning shoes on lower extremity gait biomechanics.
    Horsak B; Baca A
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):344-9. PubMed ID: 23414941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis.
    Flynn LL; Geeroms J; van der Hoeven T; Vanderborght B; Lefeber D
    J Neuroeng Rehabil; 2018 Jan; 15(1):3. PubMed ID: 29298695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of sagittal center of pressure offset on gait kinematics and kinetics.
    Haim A; Rozen N; Wolf A
    J Biomech; 2010 Mar; 43(5):969-77. PubMed ID: 20047747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing.
    Kim JY; Mills JK; Vette AH; Popovic MR
    J Biomech Eng; 2007 Dec; 129(6):838-47. PubMed ID: 18067387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New wearable walking-type continuous passive motion device for postsurgery walking rehabilitation.
    Zhu Y; Nakamura M; Horiuchi T; Kohno H; Takahashi R; Terada H; Haro H
    Proc Inst Mech Eng H; 2013 Jul; 227(7):733-45. PubMed ID: 23636753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers.
    Marques NR; LaRoche DP; Hallal CZ; Crozara LF; Morcelli MH; Karuka AH; Navega MT; Gonçalves M
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):330-6. PubMed ID: 23391513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Segment-interaction and its relevance to the control of movement during sprinting.
    Huang L; Liu Y; Wei S; Li L; Fu W; Sun Y; Feng Y
    J Biomech; 2013 Aug; 46(12):2018-23. PubMed ID: 23834897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Type synthesis and preliminary design of devices supporting lower limb's rehabilitation.
    Olinski M; Lewandowski B; Gronowicz A
    Acta Bioeng Biomech; 2015; 17(1):117-27. PubMed ID: 25951895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical Analysis Suggests Myosuit Reduces Knee Extensor Demand during Level and Incline Gait.
    Kim J; Kim Y; Kang S; Kim SJ
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abnormal volitional hip torque phasing and hip impairments in gait post stroke.
    Hyngstrom A; Onushko T; Chua M; Schmit BD
    J Neurophysiol; 2010 Mar; 103(3):1557-68. PubMed ID: 20089823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke.
    Murray SA; Ha KH; Hartigan C; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):441-9. PubMed ID: 25134084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals.
    Cheng HS; Ju MS; Lin CC
    J Biomech Eng; 2003 Dec; 125(6):881-6. PubMed ID: 14986414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reducing the energy cost of walking in older adults using a passive hip flexion device.
    Panizzolo FA; Bolgiani C; Di Liddo L; Annese E; Marcolin G
    J Neuroeng Rehabil; 2019 Oct; 16(1):117. PubMed ID: 31615535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental evaluation of indoor magnetic distortion effects on gait analysis performed with wearable inertial sensors.
    Palermo E; Rossi S; Patanè F; Cappa P
    Physiol Meas; 2014 Mar; 35(3):399-415. PubMed ID: 24499774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Body size and walking cadence affect lower extremity joint power in children's gait.
    Shultz SP; Hills AP; Sitler MR; Hillstrom HJ
    Gait Posture; 2010 Jun; 32(2):248-52. PubMed ID: 20570152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.