These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24187192)

  • 21. The kinematic and kinetic effects of solid, hinged, and no ankle-foot orthoses on stair locomotion in healthy adults.
    Radtka SA; Oliveira GB; Lindstrom KE; Borders MD
    Gait Posture; 2006 Oct; 24(2):211-8. PubMed ID: 16260141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and dynamic response characteristics of a custom composite ankle foot orthosis for Charcot-Marie-Tooth patients.
    Dufek JS; Neumann ES; Hawkins MC; O'Toole B
    Gait Posture; 2014; 39(1):308-13. PubMed ID: 23958459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking while resisting a perturbation: Effects on ankle dorsiflexor activation during swing and potential for rehabilitation.
    Blanchette A; Lambert S; Richards CL; Bouyer LJ
    Gait Posture; 2011 Jul; 34(3):358-63. PubMed ID: 21733695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A quasi-passive compliant stance control Knee-Ankle-Foot Orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650471. PubMed ID: 24187288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new powered orthosis with hip and ankle linkage for paraplegics walking.
    Nagai C; Hisada S; Obinata G; Genda E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650356. PubMed ID: 24187175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A user-centered qualitative study on experiences with ankle-foot orthoses and suggestions for improved design.
    van der Wilk D; Hijmans JM; Postema K; Verkerke GJ
    Prosthet Orthot Int; 2018 Apr; 42(2):121-128. PubMed ID: 28100099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
    Park YL; Chen BR; Pérez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R
    Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling neuromuscular effects of ankle foot orthoses (AFOs) in computer simulations of gait.
    Crabtree CA; Higginson JS
    Gait Posture; 2009 Jan; 29(1):65-70. PubMed ID: 18657977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of anticipatory postural adjustments using a powered ankle orthosis in people with Parkinson's disease and freezing of gait.
    Petrucci MN; MacKinnon CD; Hsiao-Wecksler ET
    Gait Posture; 2019 Jul; 72():188-194. PubMed ID: 31226601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.
    Belforte G; Eula G; Appendino S; Sirolli S
    Proc Inst Mech Eng H; 2011 Feb; 225(2):158-69. PubMed ID: 21428150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME
    Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking.
    Moltedo M; Baček T; Verstraten T; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    J Neuroeng Rehabil; 2018 Oct; 15(1):86. PubMed ID: 30285869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.
    Gordon KE; Sawicki GS; Ferris DP
    J Biomech; 2006; 39(10):1832-41. PubMed ID: 16023126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.
    Desloovere K; Molenaers G; Van Gestel L; Huenaerts C; Van Campenhout A; Callewaert B; Van de Walle P; Seyler J
    Gait Posture; 2006 Oct; 24(2):142-51. PubMed ID: 16934470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.
    Silver-Thorn B; Current T; Kuhse B
    Prosthet Orthot Int; 2012 Dec; 36(4):435-42. PubMed ID: 22581661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.
    Fang J; Vuckovic A; Galen S; Cossar C; Conway BA; Hunt KJ
    Technol Health Care; 2014 Jan; 22(2):273-88. PubMed ID: 24898868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of an Ankle-Foot Orthosis That Provides Support for Flaccid Paretic Plantarflexor and Dorsiflexor Muscles.
    van der Wilk D; Reints R; Postema K; Gort T; Harlaar J; Hijmans JM; Verkerke GJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1036-1045. PubMed ID: 29752239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.