These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24187193)

  • 21. Performance evaluation of the Personal Mobility and Manipulation Appliance (PerMMA).
    Wang H; Xu J; Grindle G; Vazquez J; Salatin B; Kelleher A; Ding D; Collins DM; Cooper RA
    Med Eng Phys; 2013 Nov; 35(11):1613-9. PubMed ID: 23769146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative performance analysis of M-IMU/EMG and voice user interfaces for assistive robots.
    Laureiti C; Cordella F; di Luzio FS; Saccucci S; Davalli A; Sacchetti R; Zollo L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1001-1006. PubMed ID: 28813952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A concept of needs-oriented design and evaluation of assistive robots based on ICF.
    Matsumoto Y; Nishida Y; Motomura Y; Okawa Y
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975437. PubMed ID: 22275637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A human-oriented framework for developing assistive service robots.
    McGinn C; Cullinan MF; Culleton M; Kelly K
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):293-304. PubMed ID: 28537814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies for human-driven robot comprehension of spatial descriptions by older adults in a robot fetch task.
    Carlson L; Skubic M; Miller J; Huo Z; Alexenko T
    Top Cogn Sci; 2014 Jul; 6(3):513-33. PubMed ID: 24948449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project.
    Carmichael C; Carmichael P
    Disabil Rehabil Assist Technol; 2014 Jan; 9(1):41-7. PubMed ID: 24308848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applying robotic technology to aid people with severe disabilities.
    Regalbuto M; Krouskop T; Cheatham J
    Assist Technol; 1992; 4(2):87-94. PubMed ID: 10171660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using robots to help people habituate to visible disabilities.
    Riek LD; Robinson P
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975453. PubMed ID: 22275651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of a companion robot based on field tests with single older adults in their homes.
    Zsiga K; Tóth A; Pilissy T; Péter O; Dénes Z; Fazekas G
    Assist Technol; 2018; 30(5):259-266. PubMed ID: 28628395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From training to robot behavior: towards custom scenarios for robotics in training programs for ASD.
    Gillesen JC; Barakova EI; Huskens BE; Feijs LM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975381. PubMed ID: 22275585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assistive acting movement therapy devices with pneumatic rotary-type soft actuators.
    Wilkening A; Baiden D; Ivlev O
    Biomed Tech (Berl); 2012 Dec; 57(6):445-56. PubMed ID: 23241570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Should assistive robots have a "personality"? : Potential of simplified robot personalities].
    Mayer P; Panek P
    Z Gerontol Geriatr; 2016 Jun; 49(4):298-302. PubMed ID: 27245227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Device to provide intuitive assistance in laparoscope holding.
    Minor A; Ordorica R; Villalobos J; Galan M
    Ann Biomed Eng; 2009 Mar; 37(3):643-9. PubMed ID: 19125332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization and control of a rehabilitation mobile robot by close human-machine cooperation.
    Hoppenot P; Colle E
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):181-90. PubMed ID: 11474971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Memory and accurate processing brain rehabilitation for the elderly: LEGO robot and iPad case study.
    Lopez-Samaniego L; Garcia-Zapirain B; Mendez-Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3549-56. PubMed ID: 25227068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward a practical mobile robotic aid system for people with severe physical disabilities.
    Regalbuto MA; Krouskop TA; Cheatham JB
    J Rehabil Res Dev; 1992; 29(1):19-26. PubMed ID: 1531513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.