These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24187198)

  • 21. Goal-directed grasping: the dimensional properties of an object influence the nature of the visual information mediating aperture shaping.
    Holmes SA; Heath M
    Brain Cogn; 2013 Jun; 82(1):18-24. PubMed ID: 23501700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of weakness on symmetrical bilateral grip force exertion in subjects with hemiparesis.
    Bertrand AM; Mercier C; Shun PL; Bourbonnais D; Desrosiers J
    J Neurophysiol; 2004 Apr; 91(4):1579-85. PubMed ID: 14627661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Planning movements well in advance.
    Hesse C; de Grave DD; Franz VH; Brenner E; Smeets JB
    Cogn Neuropsychol; 2008; 25(7-8):985-95. PubMed ID: 18608330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
    Ehrsson HH; Fagergren A; Johansson RS; Forssberg H
    J Neurophysiol; 2003 Nov; 90(5):2978-86. PubMed ID: 14615423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of gait variations on grip force coordination during object transport.
    Gysin P; Kaminski TR; Hass CJ; Grobet CE; Gordon AM
    J Neurophysiol; 2008 Nov; 100(5):2477-85. PubMed ID: 18753327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grasping tools: effects of task and apraxia.
    Randerath J; Li Y; Goldenberg G; Hermsdörfer J
    Neuropsychologia; 2009 Jan; 47(2):497-505. PubMed ID: 18977235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp.
    Cole KJ; Rotella DL
    Exp Brain Res; 2002 Mar; 143(1):35-41. PubMed ID: 11907688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impaired anticipatory control of grasp during obstacle crossing in Parkinson's disease.
    McIsaac TL; Diermayr G; Albert F
    Neurosci Lett; 2012 May; 516(2):242-6. PubMed ID: 22507236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Force synergies for multifingered grasping: effect of predictability in object center of mass and handedness.
    Rearick MP; Santello M
    Exp Brain Res; 2002 May; 144(1):38-49. PubMed ID: 11976758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Hand Configuration on the Grasping, Holding, and Placement of an Instrumented Object in Patients With Hemiparesis.
    Parry R; Macias Soria S; Pradat-Diehl P; Marchand-Pauvert V; Jarrassé N; Roby-Brami A
    Front Neurol; 2019; 10():240. PubMed ID: 30941091
    [No Abstract]   [Full Text] [Related]  

  • 31. Dexterous Object Manipulation Requires Context-Dependent Sensorimotor Cortical Interactions in Humans.
    Parikh PJ; Fine JM; Santello M
    Cereb Cortex; 2020 May; 30(5):3087-3101. PubMed ID: 31845726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordination of hand shape.
    Pesyna C; Pundi K; Flanders M
    J Neurosci; 2011 Mar; 31(10):3757-65. PubMed ID: 21389230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grasping an object: one movement, several components.
    Jeannerod M; Paulignan Y; Weiss P
    Novartis Found Symp; 1998; 218():5-16; discussion 16-20. PubMed ID: 9949813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CSF drainage ameliorates the motor deficit in normal pressure hydrocephalus: evidence from the analysis of grasping movements.
    Nowak DA; Gumprecht H; Topka H
    J Neurol; 2006 May; 253(5):640-7. PubMed ID: 16767541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and preliminary testing of an instrumented object for force analysis during grasping.
    Romeo RA; Cordella F; Zollo L; Formica D; Saccomandi P; Schena E; Carpino G; Davalli A; Sacchetti R; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6720-3. PubMed ID: 26737835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards a complete description of grasping kinematics: a framework for quantifying human grasping and manipulation.
    Fu Q; Santello M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8247-50. PubMed ID: 22256257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated Quantifiable Assessments of Sensorimotor Function Using an Instrumented Fragile Object.
    Adkins MD; Buczak MK; Olsen CD; Iversen MM; George JA
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human manipulation strategy when changing object deformability and task properties.
    Mazzeo A; Uliano M; Mucci P; Penzotti M; Angelini L; Cini F; Craighero L; Controzzi M
    Sci Rep; 2024 Jul; 14(1):15819. PubMed ID: 38982184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anticipatory planning of movement sequences in hemiparetic cerebral palsy.
    Mutsaarts M; Steenbergen B; Bekkering H
    Motor Control; 2005 Oct; 9(4):439-58. PubMed ID: 16333147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and development of a sensorized cylindrical object for grasping assessment.
    Cordella F; Taffoni F; Raiano L; Carpino G; Pantoni M; Zollo L; Schena E; Guglielmelli E; Formica D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3366-3369. PubMed ID: 28269025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.