BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24187200)

  • 1. Modeling, design, and optimization of Mindwalker series elastic joint.
    Wang S; Meijneke C; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650381. PubMed ID: 24187200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Modelling, and Experimental Evaluation of a Compact Elastic Actuator for a Gait Assisting Exoskeleton.
    Herodotou P; Wang S
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():331-336. PubMed ID: 31374651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a perfect balance system for active upper-extremity exoskeletons.
    Smith RL; Lobo-Prat J; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650376. PubMed ID: 24187195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons.
    Li Y; Li Z; Penzlin B; Tang Z; Liu Y; Guan X; Ji L; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4436-4439. PubMed ID: 31946850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission.
    Zhang T; Ning C; Li Y; Wang M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2456-2466. PubMed ID: 36001514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton with High Backdrivability and High Bandwidth.
    Yu S; Huang TH; Yang X; Jiao C; Yang J; Chen Y; Yi J; Su H
    IEEE ASME Trans Mechatron; 2020; 25(4):1794-1802. PubMed ID: 33746504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and control of the MINDWALKER exoskeleton.
    Wang S; Wang L; Meijneke C; van Asseldonk E; Hoellinger T; Cheron G; Ivanenko Y; La Scaleia V; Sylos-Labini F; Molinari M; Tamburella F; Pisotta I; Thorsteinsson F; Ilzkovitz M; Gancet J; Nevatia Y; Hauffe R; Zanow F; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):277-86. PubMed ID: 25373109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption.
    Rouse EJ; Mooney LM; Martinez-Villalpando EC; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650383. PubMed ID: 24187202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.
    Otten A; van Vuuren W; Stienen A; van Asseldonk E; Schouten A; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975456. PubMed ID: 22275654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous exoskeleton reduces metabolic cost of walking.
    Mooney LM; Rouse EJ; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3065-8. PubMed ID: 25570638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation.
    Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
    Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B
    Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.
    Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ; Sawicki GS
    J Appl Physiol (1985); 2012 Dec; 113(12):1862-72. PubMed ID: 23065760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.