These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 24187200)
1. Modeling, design, and optimization of Mindwalker series elastic joint. Wang S; Meijneke C; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650381. PubMed ID: 24187200 [TBL] [Abstract][Full Text] [Related]
2. Design, Modelling, and Experimental Evaluation of a Compact Elastic Actuator for a Gait Assisting Exoskeleton. Herodotou P; Wang S IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():331-336. PubMed ID: 31374651 [TBL] [Abstract][Full Text] [Related]
3. Spring uses in exoskeleton actuation design. Wang S; van Dijk W; van der Kooij H IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669 [TBL] [Abstract][Full Text] [Related]
4. Design of a perfect balance system for active upper-extremity exoskeletons. Smith RL; Lobo-Prat J; van der Kooij H; Stienen AH IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650376. PubMed ID: 24187195 [TBL] [Abstract][Full Text] [Related]
5. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation. Zhu Y; Zheng T; Jin H; Yang J; Zhao J Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545 [TBL] [Abstract][Full Text] [Related]
6. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity. Ghaffar A; Dehghani-Sanij AA; Xie SQ Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915 [TBL] [Abstract][Full Text] [Related]
7. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons. Li Y; Li Z; Penzlin B; Tang Z; Liu Y; Guan X; Ji L; Leonhardt S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4436-4439. PubMed ID: 31946850 [TBL] [Abstract][Full Text] [Related]
8. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission. Zhang T; Ning C; Li Y; Wang M IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2456-2466. PubMed ID: 36001514 [TBL] [Abstract][Full Text] [Related]
9. Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton with High Backdrivability and High Bandwidth. Yu S; Huang TH; Yang X; Jiao C; Yang J; Chen Y; Yi J; Su H IEEE ASME Trans Mechatron; 2020; 25(4):1794-1802. PubMed ID: 33746504 [TBL] [Abstract][Full Text] [Related]
10. Design and control of the MINDWALKER exoskeleton. Wang S; Wang L; Meijneke C; van Asseldonk E; Hoellinger T; Cheron G; Ivanenko Y; La Scaleia V; Sylos-Labini F; Molinari M; Tamburella F; Pisotta I; Thorsteinsson F; Ilzkovitz M; Gancet J; Nevatia Y; Hauffe R; Zanow F; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):277-86. PubMed ID: 25373109 [TBL] [Abstract][Full Text] [Related]
11. A wearable robotic orthosis with a spring-assist actuator. Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403 [TBL] [Abstract][Full Text] [Related]
12. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design. Anderson A; Richburg C; Czerniecki J; Aubin P IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656 [TBL] [Abstract][Full Text] [Related]
13. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption. Rouse EJ; Mooney LM; Martinez-Villalpando EC; Herr HM IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650383. PubMed ID: 24187202 [TBL] [Abstract][Full Text] [Related]
14. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation. Otten A; van Vuuren W; Stienen A; van Asseldonk E; Schouten A; van der Kooij H IEEE Int Conf Rehabil Robot; 2011; 2011():5975456. PubMed ID: 22275654 [TBL] [Abstract][Full Text] [Related]
15. Autonomous exoskeleton reduces metabolic cost of walking. Mooney LM; Rouse EJ; Herr HM Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3065-8. PubMed ID: 25570638 [TBL] [Abstract][Full Text] [Related]
16. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation. Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903 [TBL] [Abstract][Full Text] [Related]
17. Bi-directional series-parallel elastic actuator and overlap of the actuation layers. Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145 [TBL] [Abstract][Full Text] [Related]
18. Novel compliant actuator for wearable robotics applications. Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322 [TBL] [Abstract][Full Text] [Related]
19. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832 [TBL] [Abstract][Full Text] [Related]
20. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons. Farris DJ; Sawicki GS J Appl Physiol (1985); 2012 Dec; 113(12):1862-72. PubMed ID: 23065760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]