These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24187200)

  • 41. A novel compact compliant actuator design for rehabilitation robots.
    Yu H; Huang S; Thakor NV; Chen G; Toh SL; Sta Cruz M; Ghorbel Y; Zhu C
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650478. PubMed ID: 24187295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton.
    VĂ©lez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Jointless structure and under-actuation mechanism for compact hand exoskeleton.
    In H; Cho KJ; Kim K; Lee B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975394. PubMed ID: 22275598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quasi-passive compliant stance control Knee-Ankle-Foot Orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650471. PubMed ID: 24187288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of the Achilles Ankle Exoskeleton.
    van Dijk W; Meijneke C; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):151-160. PubMed ID: 26886997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.
    Rossa C; Lozada J; Micaelli A
    IEEE Trans Haptics; 2014; 7(4):442-53. PubMed ID: 25122593
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and Characterization of a Low-Cost and Efficient Torsional Spring for ES-RSEA.
    Al-Dahiree OS; Ghazilla RAR; Tokhi MO; Yap HJ; Gul M
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design parameters and torque profile modification of a spring-assisted hand-opening exoskeleton module.
    Butler NR; Goodwin SA; Perry JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():591-596. PubMed ID: 28813884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hysteresis modeling and compensation of a rotary series elastic actuator with nonlinear stiffness.
    Zhou L; Chen W; Chen W; Bai S; Zhao Z; Wang J; Yu H
    Rev Sci Instrum; 2021 Sep; 92(9):095005. PubMed ID: 34598513
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance.
    John SW; Murakami K; Komatsu M; Adachi S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():387-393. PubMed ID: 28813850
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design of a rotary passive viscoelastic joint for wearable robots.
    Carpino G; Accoto D; Di Palo M; Tagliamonte NL; Sergi F; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975356. PubMed ID: 22275560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot.
    Sergi F; Lee MM; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FlexCVA: a continuously variable actuator for active orthotics.
    Horst RW; Marcus RR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2425-8. PubMed ID: 17946511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanical considerations in the design of lower limb exoskeletons.
    Cenciarini M; Dollar AM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975366. PubMed ID: 22275570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-Ex: A Torque-Controllable Lower Body Exoskeleton for Dependable Human-Robot Co-existence.
    Yildirim MC; Kansizoglu AT; Emre S; Derman M; Coruk S; Soliman AF; Sendur P; Ugurlu B
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():605-610. PubMed ID: 31374697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exotendons for assistance of human locomotion.
    van den Bogert AJ
    Biomed Eng Online; 2003 Oct; 2():17. PubMed ID: 14613503
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and control of jumping microrobots with torque reversal latches.
    Skowronski N; Malek Pour M; Singh S; Longo SJ; St Pierre R
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38697139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.