BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24187206)

  • 1. Human-robot interaction tests on a novel robot for gait assistance.
    Tagliamonte NL; Sergi F; Carpino G; Accoto D; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650387. PubMed ID: 24187206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance.
    Miyake T; Kobayashi Y; Fujie MG; Sugano S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscular activity when walking in a non-anthropomorphic wearable robot.
    Tagliamonte NL; Accoto D; Sergi F; Sudano A; Formica D; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3073-6. PubMed ID: 25570640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
    Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.
    Olivier J; Bouri M; Ortlieb A; Bleuler H; Clavel R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650495. PubMed ID: 24187310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.
    Straudi S; Benedetti MG; Venturini E; Manca M; Foti C; Basaglia N
    NeuroRehabilitation; 2013; 33(4):555-63. PubMed ID: 24018369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cable-driven locomotor training system for restoration of gait in human SCI.
    Wu M; Hornby TG; Landry JM; Roth H; Schmit BD
    Gait Posture; 2011 Feb; 33(2):256-60. PubMed ID: 21232961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive position anticipation in a support robot for overground gait training enhances transparency.
    Everarts C; Vallery H; Bolliger M; Ronsse R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel actuation design of a gait trainer with shadow leg approach.
    Meuleman J; Meuleman J; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650369. PubMed ID: 24187188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults.
    Lee HJ; Lee S; Chang WH; Seo K; Shim Y; Choi BO; Ryu GH; Kim YH
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1549-1557. PubMed ID: 28186902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidirectional transparent support for overground gait training.
    Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training.
    Galen SS; Clarke CJ; McLean AN; Allan DB; Conway BA
    NeuroRehabilitation; 2014; 34(2):287-95. PubMed ID: 24419018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.