These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24187206)
1. Human-robot interaction tests on a novel robot for gait assistance. Tagliamonte NL; Sergi F; Carpino G; Accoto D; Guglielmelli E IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650387. PubMed ID: 24187206 [TBL] [Abstract][Full Text] [Related]
2. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance. Miyake T; Kobayashi Y; Fujie MG; Sugano S IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839 [TBL] [Abstract][Full Text] [Related]
3. Muscular activity when walking in a non-anthropomorphic wearable robot. Tagliamonte NL; Accoto D; Sergi F; Sudano A; Formica D; Guglielmelli E Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3073-6. PubMed ID: 25570640 [TBL] [Abstract][Full Text] [Related]
4. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
5. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot. Erwin A; O'Malley MK; Ress D; Sergi F IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022 [TBL] [Abstract][Full Text] [Related]
6. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270 [TBL] [Abstract][Full Text] [Related]
7. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations. Mosconi D; Moreno Y; Siqueira A Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262 [TBL] [Abstract][Full Text] [Related]
8. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency. Haberland M; Kim S Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285 [TBL] [Abstract][Full Text] [Related]
9. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design. Olivier J; Bouri M; Ortlieb A; Bleuler H; Clavel R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650495. PubMed ID: 24187310 [TBL] [Abstract][Full Text] [Related]
10. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. Straudi S; Benedetti MG; Venturini E; Manca M; Foti C; Basaglia N NeuroRehabilitation; 2013; 33(4):555-63. PubMed ID: 24018369 [TBL] [Abstract][Full Text] [Related]
11. A cable-driven locomotor training system for restoration of gait in human SCI. Wu M; Hornby TG; Landry JM; Roth H; Schmit BD Gait Posture; 2011 Feb; 33(2):256-60. PubMed ID: 21232961 [TBL] [Abstract][Full Text] [Related]
12. Adaptive position anticipation in a support robot for overground gait training enhances transparency. Everarts C; Vallery H; Bolliger M; Ronsse R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300 [TBL] [Abstract][Full Text] [Related]
13. Novel actuation design of a gait trainer with shadow leg approach. Meuleman J; Meuleman J; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650369. PubMed ID: 24187188 [TBL] [Abstract][Full Text] [Related]
14. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults. Lee HJ; Lee S; Chang WH; Seo K; Shim Y; Choi BO; Ryu GH; Kim YH IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1549-1557. PubMed ID: 28186902 [TBL] [Abstract][Full Text] [Related]
15. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study. Hussain S; Xie SQ; Jamwal PK IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249 [TBL] [Abstract][Full Text] [Related]
16. Multidirectional transparent support for overground gait training. Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327 [TBL] [Abstract][Full Text] [Related]
17. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271 [TBL] [Abstract][Full Text] [Related]
18. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training. Galen SS; Clarke CJ; McLean AN; Allan DB; Conway BA NeuroRehabilitation; 2014; 34(2):287-95. PubMed ID: 24419018 [TBL] [Abstract][Full Text] [Related]
19. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
20. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots. d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]