These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24187220)

  • 1. SCRIPT passive orthosis: design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home.
    Ates S; Lobo-Prat J; Lammertse P; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650401. PubMed ID: 24187220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of hand function in children with cerebral palsy via an orthosis that provides wrist extension and thumb abduction.
    Barroso PN; Vecchio SD; Xavier YR; Sesselmann M; Araújo PA; Pinotti M
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):937-43. PubMed ID: 21689874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fuzzy logic control of an active wrist orthosis.
    Kilic E; Dogan E
    Proc Inst Mech Eng H; 2017 Aug; 231(8):728-746. PubMed ID: 28431487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA).
    Aubin PM; Sallum H; Walsh C; Stirling L; Correia A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650500. PubMed ID: 24187315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers.
    Carpi F; Frediani G; Gerboni C; Gemignani J; De Rossi D
    Med Eng Phys; 2014 Feb; 36(2):205-11. PubMed ID: 24275560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a spring-assisted exoskeleton module for wrist and hand rehabilitation.
    Perry JC; Trimble S; Castilho Machado LG; Schroeder JS; Belloso A; Rodriguez-de-Pablo C; Keller T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():594-597. PubMed ID: 28268400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance and effectiveness of a new dynamic hand-wrist orthosis in chronic stroke patients.
    Andringa AS; Van de Port IG; Meijer JW
    NeuroRehabilitation; 2013; 33(2):225-31. PubMed ID: 23949058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of wrist position on maximum grip force in a post-operative orthosis.
    Burssens A; Schelpe N; Vanhaecke J; Dezillie M; Stockmans F
    Prosthet Orthot Int; 2017 Feb; 41(1):78-84. PubMed ID: 26447140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton.
    Tianyao Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():578-581. PubMed ID: 28324934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic force-sharing in multi-digit task.
    Dumont CE; Popovic MR; Keller T; Sheikh R
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):138-46. PubMed ID: 16225972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation.
    Brokaw EB; Black I; Holley RJ; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):391-9. PubMed ID: 21622079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wearable tremor-suppression orthosis.
    Kotovsky J; Rosen MJ
    J Rehabil Res Dev; 1998 Oct; 35(4):373-87. PubMed ID: 10220215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation.
    Martinez JA; Ng P; Lu S; Campagna MS; Celik O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650459. PubMed ID: 24187276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tone-reducing wrist--hand orthosis.
    Scherling E; Johnson H
    Am J Occup Ther; 1989 Sep; 43(9):609-11. PubMed ID: 2817077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke.
    Miller LC; Ruiz-Torres R; Stienen AH; Dewald JP
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2312-7. PubMed ID: 19567336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of wrist position on thumb flexor and adductor torques in paralysed hands of people with tetraplegia.
    Harvey L; Herbert RD; Stadler M
    Clin Biomech (Bristol, Avon); 2010 Mar; 25(3):194-8. PubMed ID: 20034713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive velocity field control of a forearm-wrist rehabilitation robot.
    Erdogan A; Satici AC; Patoglu V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975433. PubMed ID: 22275634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary Results from a Six-Week Home-Based Evaluation of a Rehabilitation Device for Hand and Wrist Therapy After Stroke.
    Velmurugan V; Wood LJ; Amirabdollahian F
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.