These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 24187223)
21. Adaptive position anticipation in a support robot for overground gait training enhances transparency. Everarts C; Vallery H; Bolliger M; Ronsse R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300 [TBL] [Abstract][Full Text] [Related]
22. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies. Jamwal PK; Hussain S; Ghayesh MH Proc Inst Mech Eng H; 2020 May; 234(5):444-457. PubMed ID: 31916511 [TBL] [Abstract][Full Text] [Related]
23. Novel compliant actuator for wearable robotics applications. Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322 [TBL] [Abstract][Full Text] [Related]
24. User-driven walking assistance: first experimental results using the MyoSuit. Haufe FL; Kober AM; Schmidt K; Sancho-Puchades A; Duarte JE; Wolf P; Riener R IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():944-949. PubMed ID: 31374751 [TBL] [Abstract][Full Text] [Related]
25. Adaptive impedance control of a robotic orthosis for gait rehabilitation. Hussain S; Xie SQ; Jamwal PK IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241 [TBL] [Abstract][Full Text] [Related]
26. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Jiménez-Fabián R; Verlinden O Med Eng Phys; 2012 May; 34(4):397-408. PubMed ID: 22177895 [TBL] [Abstract][Full Text] [Related]
27. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697 [TBL] [Abstract][Full Text] [Related]
28. Rehabilitation exoskeletal robotics. The promise of an emerging field. Pons JL IEEE Eng Med Biol Mag; 2010; 29(3):57-63. PubMed ID: 20659858 [TBL] [Abstract][Full Text] [Related]
29. Tip-Over Stability Analysis of a Pelvic Support Walking Robot. Han Y; Guo S; Zhang L; Xi FJ; Lu W J Healthc Eng; 2020; 2020():1506250. PubMed ID: 32104556 [TBL] [Abstract][Full Text] [Related]
30. Robotic learning from demonstration of therapist's time-varying assistance to a patient in trajectory-following tasks. Najafi M; Adams K; Tavakoli M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():888-894. PubMed ID: 28813933 [TBL] [Abstract][Full Text] [Related]
31. Assist-as-needed path control for the PASCAL rehabilitation robot. Keller U; Rauter G; Riener R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650475. PubMed ID: 24187292 [TBL] [Abstract][Full Text] [Related]
32. Reducing muscle effort in walking through powered exoskeletons. Lenzi T; Zanotto D; Stegall P; Carrozza MC; Agrawal SK Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3926-9. PubMed ID: 23366786 [TBL] [Abstract][Full Text] [Related]
33. The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. van Asseldonk EH; Veneman JF; Ekkelenkamp R; Buurke JH; van der Helm FC; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):360-370. PubMed ID: 18713676 [TBL] [Abstract][Full Text] [Related]
34. A Human-assistive Robotic Platform with Quadrupedal Locomotion Shen T; Afsar MR; Haque MR; McClain E; Meek S; Shen X IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():305-310. PubMed ID: 31374647 [TBL] [Abstract][Full Text] [Related]
35. Velocity-dependent reference trajectory generation for the LOPES gait training robot. Tufekciler N; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2011; 2011():5975414. PubMed ID: 22275617 [TBL] [Abstract][Full Text] [Related]
36. Human-robot interaction tests on a novel robot for gait assistance. Tagliamonte NL; Sergi F; Carpino G; Accoto D; Guglielmelli E IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650387. PubMed ID: 24187206 [TBL] [Abstract][Full Text] [Related]
37. An Adaptive and Hybrid End-Point/Joint Impedance Controller for Lower Limb Exoskeletons. Maggioni S; Reinert N; Lünenburger L; Melendez-Calderon A Front Robot AI; 2018; 5():104. PubMed ID: 33500983 [TBL] [Abstract][Full Text] [Related]
38. A cable-driven locomotor training system for restoration of gait in human SCI. Wu M; Hornby TG; Landry JM; Roth H; Schmit BD Gait Posture; 2011 Feb; 33(2):256-60. PubMed ID: 21232961 [TBL] [Abstract][Full Text] [Related]
39. Modified Computed Torque Control of a Robotic Orthosis for Gait Rehabilitation. Dao QT; Yamamoto SI Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1719-1722. PubMed ID: 30440726 [TBL] [Abstract][Full Text] [Related]
40. Gait mode recognition and control for a portable-powered ankle-foot orthosis. David Li Y; Hsiao-Wecksler ET IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650373. PubMed ID: 24187192 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]