These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24187228)

  • 1. Development of an energy harvesting backpack and performance evaluation.
    Shepertycky M; Zhang JT; Liu YF; Li Q
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650409. PubMed ID: 24187228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.
    Riemer R; Shapiro A
    J Neuroeng Rehabil; 2011 Apr; 8():22. PubMed ID: 21521509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.
    Shepertycky M; Li Q
    PLoS One; 2015; 10(6):e0127635. PubMed ID: 26039493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power Backpack for Energy Harvesting and Reduced Load Impact.
    Yang Z; Yang Y; Liu F; Wang Z; Li Y; Qiu J; Xiao X; Li Z; Lu Y; Ji L; Wang ZL; Cheng J
    ACS Nano; 2021 Feb; 15(2):2611-2623. PubMed ID: 33533242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating electricity while walking with a medial-lateral oscillating load carriage device.
    Martin JP; Li Q
    R Soc Open Sci; 2019 Jul; 6(7):182021. PubMed ID: 31417695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower-limb-driven energy harvesting: preliminary analysis.
    Zhang JT; Li Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4511-4. PubMed ID: 22255341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body motion for powering biomedical devices.
    Romero E; Warrington RO; Neuman MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2752-5. PubMed ID: 19964048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy harvesting from human walking to power biomedical devices using oscillating generation.
    Montoya JA; Mariscal DM; Romero E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4951-4954. PubMed ID: 28269379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harvesting energy from the natural vibration of human walking.
    Yang W; Chen J; Zhu G; Yang J; Bai P; Su Y; Jing Q; Cao X; Wang ZL
    ACS Nano; 2013 Dec; 7(12):11317-24. PubMed ID: 24180642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a suspended-load backpack on gait.
    Xu X; Hsiang SM; Mirka GA
    Gait Posture; 2009 Jan; 29(1):151-3. PubMed ID: 18693016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating electricity while walking with loads.
    Rome LC; Flynn L; Goldman EM; Yoo TD
    Science; 2005 Sep; 309(5741):1725-8. PubMed ID: 16151012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple model for predicting walking energetics with elastically-suspended backpack.
    Li D; Li T; Li Q; Liu T; Yi J
    J Biomech; 2016 Dec; 49(16):4150-4153. PubMed ID: 27825599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: Effect of walking velocity.
    Bonnet X; Villa C; Fodé P; Lavaste F; Pillet H
    Proc Inst Mech Eng H; 2014 Jan; 228(1):60-6. PubMed ID: 24288379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical knee energy harvester: Design optimization and testing.
    Gad M; Lev-Ari B; Shapiro A; Ben-David C; Riemer R
    Front Robot AI; 2022; 9():998248. PubMed ID: 36274915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.