These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 24187228)
21. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
22. Modeling and Prediction of Wearable Energy Harvesting Sliding Shoes for Metabolic Cost and Energy Rate Outside of the Lab. Shull PB; Xia H Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287288 [TBL] [Abstract][Full Text] [Related]
23. The interacting effect of cognitive and motor task demands on performance of gait, balance and cognition in young adults. Szturm T; Maharjan P; Marotta JJ; Shay B; Shrestha S; Sakhalkar V Gait Posture; 2013 Sep; 38(4):596-602. PubMed ID: 23477841 [TBL] [Abstract][Full Text] [Related]
24. The energy cost for the step-to-step transition in amputee walking. Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343 [TBL] [Abstract][Full Text] [Related]
25. Energy cost and mechanical work of walking during load carriage in soldiers. Grenier JG; Peyrot N; Castells J; Oullion R; Messonnier L; Morin JB Med Sci Sports Exerc; 2012 Jun; 44(6):1131-40. PubMed ID: 22215177 [TBL] [Abstract][Full Text] [Related]
26. Implanted Carbon Nanotubes Harvest Electrical Energy from Heartbeat for Medical Implants. Ruhparwar A; Osswald A; Kim H; Wakili R; Müller J; Pizanis N; Al-Rashid F; Hendgen-Cotta U; Rassaf T; Kim SJ Adv Mater; 2024 Aug; 36(32):e2313688. PubMed ID: 38685135 [TBL] [Abstract][Full Text] [Related]
27. Energy harvesting: an integrated view of materials, devices and applications. Radousky HB; Liang H Nanotechnology; 2012 Dec; 23(50):502001. PubMed ID: 23186865 [TBL] [Abstract][Full Text] [Related]
28. A Study on the Improvement of the Durability of an Energy Harvesting Device with a Mechanical Stopper and a Performance Evaluation for Its Application in Trains. Kim J Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32825051 [TBL] [Abstract][Full Text] [Related]
29. Investigation of a passive inter-limb device on step-to-step transition of human walking. Zhang JT; Li Q IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650434. PubMed ID: 24187252 [TBL] [Abstract][Full Text] [Related]
30. Biomechanical and physiological aspects of legged locomotion in humans. Saibene F; Minetti AE Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959 [TBL] [Abstract][Full Text] [Related]
31. Energy Harvesting Combat Boot for Satellite Positioning. Akay H; Xu R; Han DCX; Teo TH; Kim SG Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424177 [TBL] [Abstract][Full Text] [Related]
32. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait. Caldwell GE; Forrester LW Med Sci Sports Exerc; 1992 Dec; 24(12):1396-412. PubMed ID: 1470024 [TBL] [Abstract][Full Text] [Related]
33. Accuracy of the actibelt(®) accelerometer for measuring walking speed in a controlled environment among persons with multiple sclerosis. Motl RW; Weikert M; Suh Y; Sosnoff JJ; Pula J; Soaz C; Schimpl M; Lederer C; Daumer M Gait Posture; 2012 Feb; 35(2):192-6. PubMed ID: 21945386 [TBL] [Abstract][Full Text] [Related]
34. Analysis of lower limb internal kinetics and electromyography in elite race walking. Hanley B; Bissas A J Sports Sci; 2013; 31(11):1222-32. PubMed ID: 23464365 [TBL] [Abstract][Full Text] [Related]
35. Differentiating ability in users of the ReWalk(TM) powered exoskeleton: an analysis of walking kinematics. Talaty M; Esquenazi A; Briceno JE IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650469. PubMed ID: 24187286 [TBL] [Abstract][Full Text] [Related]
36. Influence of school bag carrying on gait kinetics. Cottalorda J; Rahmani A; Diop M; Gautheron V; Ebermeyer E; Belli A J Pediatr Orthop B; 2003 Nov; 12(6):357-64. PubMed ID: 14530691 [TBL] [Abstract][Full Text] [Related]
37. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents? Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of book backpack load during walking. Wang Y; Pascoe DD; Weimar W Ergonomics; 2001 Jul; 44(9):858-69. PubMed ID: 11560366 [TBL] [Abstract][Full Text] [Related]
39. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients. Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556 [TBL] [Abstract][Full Text] [Related]
40. Interrelationships between mechanical power, energy transfers, and walking and running economy. Martin PE; Heise GD; Morgan DW Med Sci Sports Exerc; 1993 Apr; 25(4):508-15. PubMed ID: 8479306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]