These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24187231)

  • 1. Adaptive control of a serial-in-parallel robotic rehabilitation device.
    Pehlivan AU; Sergi F; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650412. PubMed ID: 24187231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial.
    Frullo JM; Elinger J; Pehlivan AU; Fitle K; Nedley K; Francisco GE; Sergi F; O'Malley MK
    Front Neurorobot; 2017; 11():26. PubMed ID: 28659784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Cooperative Control for Hybrid FES-Robotic Upper Limb Devices: a Simulation Study.
    Bardi E; Dalla Gasperina S; Pedrocchi A; Ambrosini E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6398-6401. PubMed ID: 34892576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation.
    Pehlivan AU; Rose C; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650462. PubMed ID: 24187279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assistive Sliding Mode Control of a Rehabilitation Robot with Automatic Weight Adjustment.
    Hashemi A; McPhee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4891-4896. PubMed ID: 34892305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
    Mancisidor A; Zubizarreta A; Cabanes I; Portillo E; Jung JH
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29510596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rehabilitation robot control framework with adaptation of training tasks and robotic assistance.
    Xu J; Huang K; Zhang T; Cao K; Ji A; Xu L; Li Y
    Front Bioeng Biotechnol; 2023; 11():1244550. PubMed ID: 37849981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-adaptive robot training of stroke survivors for continuous tracking movements.
    Vergaro E; Casadio M; Squeri V; Giannoni P; Morasso P; Sanguineti V
    J Neuroeng Rehabil; 2010 Mar; 7():13. PubMed ID: 20230610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive output control of a mobile manipulator hanging from a quadcopter unmanned vehicle.
    Ballesteros-Escamilla MF; Cruz-Ortiz D; Chairez I; Luviano-Juárez A
    ISA Trans; 2019 Nov; 94():200-217. PubMed ID: 31078297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectory tracking controller of a robotized arm with joint constraints, a direct adaptive gain with state limitations approach.
    Hernandez-Sanchez A; Chairez I; Matehuala-Moran I; Alfaro-Ponce M; Molina A
    ISA Trans; 2023 Oct; 141():276-287. PubMed ID: 37507326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.