These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24187260)

  • 1. Design of an expert system to automatically calibrate impedance control for powered knee prostheses.
    Wang D; Liu M; Zhang F; Huang H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650442. PubMed ID: 24187260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cyber Expert System for Auto-Tuning Powered Prosthesis Impedance Control Parameters.
    Huang H; Crouch DL; Liu M; Sawicki GS; Wang D
    Ann Biomed Eng; 2016 May; 44(5):1613-24. PubMed ID: 26407703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming.
    Yue Wen ; Ming Liu ; Si J; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5071-5074. PubMed ID: 28269408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Personalized Control for Powered Knee Prostheses: Continuous Impedance Functions and PCA-Based Tuning Method.
    Hong W; Huang HH
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early evaluation of a powered transfemoral prosthesis with force-modulated impedance control and energy regeneration.
    Warner H; Khalaf P; Richter H; Simon D; Hardin E; van den Bogert AJ
    Med Eng Phys; 2022 Feb; 100():103744. PubMed ID: 35144731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
    Zhang F; Liu M; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):64-72. PubMed ID: 25486645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.
    Dawley JA; Fite KB; Fulk GD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650389. PubMed ID: 24187208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
    Zhang F; Liu M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the impedance of above-knee powered prostheses need to be adjusted for load-carrying conditions?
    Brandt A; Ming Liu ; Huang HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5075-5078. PubMed ID: 28269409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes.
    Simon AM; Fey NP; Finucane SB; Lipschutz RD; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650371. PubMed ID: 24187190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Sit/Stand Loading Symmetry and Timing Through Unified Variable Impedance Control of a Powered Knee-Ankle Prosthesis.
    Welker CG; Best TK; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4146-4155. PubMed ID: 37773917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable Impedance Control of Powered Knee Prostheses Using Human-Inspired Algebraic Curves.
    Mohammadi A; Gregg RD
    J Comput Nonlinear Dyn; 2019 Oct; 14(10):101007-10100710. PubMed ID: 32280314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intuitive Clinician Control Interface for a Powered Knee-Ankle Prosthesis: A Case Study.
    Quintero D; Reznick E; Lambert DJ; Rezazadeh S; Gray L; Gregg RD
    IEEE J Transl Eng Health Med; 2018; 6():2600209. PubMed ID: 30546971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.
    Martinez-Villalpando EC; Herr H
    J Rehabil Res Dev; 2009; 46(3):361-73. PubMed ID: 19675988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a wearable perturbator for human knee impedance estimation during gait.
    Tucker MR; Moser A; Lambercy O; Sulzer J; Gassert R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650372. PubMed ID: 24187191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Speed-Adaptive Control of a Powered Geared Five-Bar Prosthetic Knee Using BP Neural Network Gait Recognition.
    Sun Y; Huang R; Zheng J; Dong D; Chen X; Bai L; Ge W
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Optimization for Control of Robotic Knee Prostheses Toward Improved Symmetry of Propulsive Impulse.
    Li M; Liu W; Si J; Stallrich JW; Huang H
    IEEE Trans Biomed Eng; 2023 May; 70(5):1634-1642. PubMed ID: 36417736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.