These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 24187263)

  • 21. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Movement of finger joints induced by synergistic wrist motion.
    Su FC; Chou YL; Yang CS; Lin GT; An KN
    Clin Biomech (Bristol, Avon); 2005 Jun; 20(5):491-7. PubMed ID: 15836936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Underactuated Robotic Finger with Variable Stiffness Joints.
    Teng Z; Xu G; Liang R; Li M; Zhang S; Tao T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5305-5309. PubMed ID: 31947054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of dominant hand range of motion among throwing types in baseball pitchers.
    Wang LH; Kuo LC; Shih SW; Lo KC; Su FC
    Hum Mov Sci; 2013 Aug; 32(4):719-29. PubMed ID: 23764035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SCRIPT passive orthosis: design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home.
    Ates S; Lobo-Prat J; Lammertse P; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650401. PubMed ID: 24187220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Attention-Controlled Hand Exoskeleton for the Rehabilitation of Finger Extension and Flexion Using a Rigid-Soft Combined Mechanism.
    Li M; He B; Liang Z; Zhao CG; Chen J; Zhuo Y; Xu G; Xie J; Althoefer K
    Front Neurorobot; 2019; 13():34. PubMed ID: 31231203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term results after vascularised joint transfer for finger joint reconstruction.
    Hierner R; Berger AK
    J Plast Reconstr Aesthet Surg; 2008 Nov; 61(11):1338-46. PubMed ID: 17996505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential splintage for flexor tendon rehabilitation: an experimental study of its effect on finger flexion strength.
    Savage R; Pritchard MG; Thomas M; Newcombe RG
    J Hand Surg Br; 2005 May; 30(2):168-74. PubMed ID: 15757770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term results of free vascularized second toe joint transfers to finger proximal interphalangeal joints.
    Tsubokawa N; Yoshizu T; Maki Y
    J Hand Surg Am; 2003 May; 28(3):443-7. PubMed ID: 12772102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a multi-DoF transhumeral robotic arm prosthesis.
    Bandara DSV; Gopura RARC; Hemapala KTMU; Kiguchi K
    Med Eng Phys; 2017 Oct; 48():131-141. PubMed ID: 28728864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and fabrication of a three dimensional printable non-assembly articulated hand exoskeleton for rehabilitation.
    Lei Cui ; Phan A; Allison G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4627-30. PubMed ID: 26737325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myoelectric hand prosthesis force control through servo motor current feedback.
    Sono TS; Menegaldo LL
    Artif Organs; 2009 Oct; 33(10):871-6. PubMed ID: 19681841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel FMRI-Compatible wrist robotic device for brain activation assessment during rehabilitation exercise.
    Sharini H; Riyahi Alam N; Khabiri H; Arabalibeik H; Hashemi H; Azimi AR; Masjoodi S
    Med Eng Phys; 2020 Sep; 83():112-122. PubMed ID: 32507416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical design and feasibility of a finger exoskeleton to support finger extension of severely affected stroke patients.
    Haarman CJW; Hekman EEG; Rietman JS; Van Der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel framework for virtual prototyping of rehabilitation exoskeletons.
    Agarwal P; Kuo PH; Neptune RR; Deshpande AD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650382. PubMed ID: 24187201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single degree-of-freedom exoskeleton mechanism design for thumb rehabilitation.
    Yihun Y; Miklos R; Perez-Gracia A; Reinkensmeyer DJ; Denney K; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1916-20. PubMed ID: 23366289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Adaptive Mechatronic Exoskeleton for Force-Controlled Finger Rehabilitation.
    Dickmann T; Wilhelm NJ; Glowalla C; Haddadin S; van der Smagt P; Burgkart R
    Front Robot AI; 2021; 8():716451. PubMed ID: 34660703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Configuration Synthesis and Performance Analysis of Finger Soft Actuator.
    Zhang Z; Chen H; Zhang Z
    Appl Bionics Biomech; 2018; 2018():4264560. PubMed ID: 30186364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.