These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24187264)

  • 1. Integrated vision-based robotic arm interface for operators with upper limb mobility impairments.
    Jiang H; Wachs JP; Duerstock BS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650447. PubMed ID: 24187264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm.
    Chen X; Zhao B; Wang Y; Gao X
    J Neural Eng; 2019 Apr; 16(2):026012. PubMed ID: 30523962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for user interface of large displays using arm pointing and finger counting gesture recognition.
    Kim H; Kim Y; Lee EC
    ScientificWorldJournal; 2014; 2014():683045. PubMed ID: 25258732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion Estimation and Hand Gesture Recognition-Based Human-UAV Interaction Approach in Real Time.
    Yoo M; Na Y; Song H; Kim G; Yun J; Kim S; Moon C; Jo K
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries.
    Huang Q; Chen Y; Zhang Z; He S; Zhang R; Liu J; Zhang Y; Shao M; Li Y
    J Neural Eng; 2019 Apr; 16(2):026021. PubMed ID: 30620927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Autonomous Tongue Control of an Assistive Robotic Arm for Individuals with Quadriplegia.
    Hildebrand M; Bonde F; Kobborg RVN; Andersen C; Norman AF; Thogersen M; Bengtson SH; Dosen S; Struijk NSLA
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():157-162. PubMed ID: 31374623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hands-Free User Interface for VR Headsets Based on In Situ Facial Gesture Sensing.
    Kim J; Cha J; Kim S
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy.
    Wood KC; Lathan CE; Kaufman KR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):300-5. PubMed ID: 23193461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D joystick for robotic arm control by individuals with high level spinal cord injuries.
    Jiang H; Wachs JP; Pendergast M; Duerstock BS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650432. PubMed ID: 24187250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation.
    AirĂ² Farulla G; Pianu D; Cempini M; Cortese M; Russo LO; Indaco M; Nerino R; Chimienti A; Oddo CM; Vitiello N
    Sensors (Basel); 2016 Feb; 16(2):208. PubMed ID: 26861333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vision-Based Learning from Demonstration System for Robot Arms.
    Hwang PJ; Hsu CC; Chou PY; Wang WY; Lin CH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Recognition Based on Sensor Modalities for Robotic Systems: A Survey.
    Manzoor S; Joo SH; Kim EJ; Bae SH; In GG; Pyo JW; Kuc TY
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).
    Bengtson SH; Bak T; Andreasen Struijk LNS; Moeslund TB
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):731-745. PubMed ID: 31268368
    [No Abstract]   [Full Text] [Related]  

  • 19. Performance evaluation of the Personal Mobility and Manipulation Appliance (PerMMA).
    Wang H; Xu J; Grindle G; Vazquez J; Salatin B; Kelleher A; Ding D; Collins DM; Cooper RA
    Med Eng Phys; 2013 Nov; 35(11):1613-9. PubMed ID: 23769146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ANSO study: evaluation in an indoor environment of a mobile assistance robotic grasping arm.
    Coignard P; Departe JP; Remy Neris O; Baillet A; Bar A; Drean D; Verier A; Leroux C; Belletante P; Le Guiet JL
    Ann Phys Rehabil Med; 2013 Dec; 56(9-10):621-33. PubMed ID: 24459695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.