These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 24187280)
1. Restoring ADL function after wrist surgery in children with cerebral palsy: a novel Bilateral robot system design. Holley D; Theriault A; Kamara S; Anewenter V; Hughes D; Johnson MJ IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650463. PubMed ID: 24187280 [TBL] [Abstract][Full Text] [Related]
2. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Wu YN; Hwang M; Ren Y; Gaebler-Spira D; Zhang LQ Neurorehabil Neural Repair; 2011 May; 25(4):378-85. PubMed ID: 21343525 [TBL] [Abstract][Full Text] [Related]
3. A modular low-clearance wrist orthosis for improving wrist motion in children with cerebral palsy. Holley D; Johnson M; Harris G; Beardsley S Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3069-72. PubMed ID: 25570639 [TBL] [Abstract][Full Text] [Related]
4. Development of a robotic device for facilitating learning by children who have severe disabilities. Cook AM; Meng MQ; Gu JJ; Howery K IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):178-87. PubMed ID: 12503783 [TBL] [Abstract][Full Text] [Related]
5. Ankle control and strength training for children with cerebral palsy using the Rutgers Ankle CP: a case study. Cioi D; Kale A; Burdea G; Engsberg J; Janes W; Ross S IEEE Int Conf Rehabil Robot; 2011; 2011():5975432. PubMed ID: 22275633 [TBL] [Abstract][Full Text] [Related]
6. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot. Sergi F; Lee MM; O'Malley MK IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298 [TBL] [Abstract][Full Text] [Related]
7. Virtual reality aided training of combined arm and leg movements of children with CP. Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183 [TBL] [Abstract][Full Text] [Related]
8. Research and development of compact wrist rehabilitation robot system. Yamamoto I; Inagawa N; Matsui M; Hachisuka K; Wada F; Hachisuka A Biomed Mater Eng; 2014; 24(1):123-8. PubMed ID: 24211891 [TBL] [Abstract][Full Text] [Related]
9. Usability test of KNRC self-feeding robot. Song WK; Song WJ; Kim Y; Kim J IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650501. PubMed ID: 24187316 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of robotic rehabilitation of ankle impairments in children with cerebral palsy. Wu YN; Ren Y; Hwang M; Gaebler-Spira DJ; Zhang LQ Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4481-4. PubMed ID: 21095776 [TBL] [Abstract][Full Text] [Related]
11. What is it like to walk with the help of a robot? Children's perspectives on robotic gait training technology. Phelan SK; Gibson BE; Wright FV Disabil Rehabil; 2015; 37(24):2272-81. PubMed ID: 25856202 [TBL] [Abstract][Full Text] [Related]
12. Impact of intensive upper limb rehabilitation on quality of life: a randomized trial in children with unilateral cerebral palsy. Sakzewski L; Carlon S; Shields N; Ziviani J; Ware RS; Boyd RN Dev Med Child Neurol; 2012 May; 54(5):415-23. PubMed ID: 22429002 [TBL] [Abstract][Full Text] [Related]
13. Control system design of a 3-DOF upper limbs rehabilitation robot. Denève A; Moughamir S; Afilal L; Zaytoon J Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080 [TBL] [Abstract][Full Text] [Related]
14. Applicability of a new robotic walking aid in a patient with cerebral palsy. Case report. Smania N; Gandolfi M; Marconi V; Calanca A; Geroin C; Piazza S; Bonetti P; Fiorini P; Cosentino A; Capelli C; Conte D; Bendinelli M; Munari D; Ianes P; Fiaschi A; Picelli A Eur J Phys Rehabil Med; 2012 Mar; 48(1):147-53. PubMed ID: 22543558 [TBL] [Abstract][Full Text] [Related]
15. An upper limb robot model of children limb for cerebral palsy neurorehabilitation. Pathak Y; Johnson M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1936-9. PubMed ID: 23366294 [TBL] [Abstract][Full Text] [Related]
16. A motor learning therapeutic intervention for a child with cerebral palsy through a social assistive robot. Buitrago JA; Bolaños AM; Caicedo Bravo E Disabil Rehabil Assist Technol; 2020 Apr; 15(3):357-362. PubMed ID: 30806105 [No Abstract] [Full Text] [Related]
17. Assist-as-needed path control for the PASCAL rehabilitation robot. Keller U; Rauter G; Riener R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650475. PubMed ID: 24187292 [TBL] [Abstract][Full Text] [Related]
18. Pediatric anklebot. Krebs HI; Rossi S; Kim SJ; Artemiadis PK; Williams D; Castelli E; Cappa P IEEE Int Conf Rehabil Robot; 2011; 2011():5975410. PubMed ID: 22275613 [TBL] [Abstract][Full Text] [Related]
19. The combined effect of Dynamic splinting and Neuromuscular electrical stimulation in reducing wrist and elbow contractures in six children with Cerebral palsy. Postans N; Wright P; Bromwich W; Wilkinson I; Farmer SE; Swain I Prosthet Orthot Int; 2010 Mar; 34(1):10-9. PubMed ID: 20141494 [TBL] [Abstract][Full Text] [Related]
20. Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection. Novak D; Riener R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650507. PubMed ID: 24187322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]