These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 24187292)

  • 21. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ARMin: a robot for patient-cooperative arm therapy.
    Nef T; Mihelj M; Riener R
    Med Biol Eng Comput; 2007 Sep; 45(9):887-900. PubMed ID: 17674069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive position anticipation in a support robot for overground gait training enhances transparency.
    Everarts C; Vallery H; Bolliger M; Ronsse R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a robotic device for facilitating learning by children who have severe disabilities.
    Cook AM; Meng MQ; Gu JJ; Howery K
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):178-87. PubMed ID: 12503783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection.
    Novak D; Riener R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650507. PubMed ID: 24187322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What's new in new technologies for upper extremity rehabilitation?
    Brochard S; Robertson J; Médée B; Rémy-Néris O
    Curr Opin Neurol; 2010 Dec; 23(6):683-7. PubMed ID: 20852420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MANUS--a wheelchair-mounted rehabilitation robot.
    Driessen BJ; Evers HG; van Woerden JA
    Proc Inst Mech Eng H; 2001; 215(3):285-90. PubMed ID: 11436271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.
    Brookes J; Kuznecovs M; Kanakis M; Grigals A; Narvidas M; Gallagher J; Levesley M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():676-681. PubMed ID: 28813898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Computerized method for arm movement assessment in Parkinson's disease and cerebellar syndrome patients].
    Dordević O; Popović MB; Kostić V
    Srp Arh Celok Lek; 2005; 133(1-2):14-20. PubMed ID: 16053170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Usability test of KNRC self-feeding robot.
    Song WK; Song WJ; Kim Y; Kim J
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650501. PubMed ID: 24187316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving transparency of powered exoskeletons using force/torque sensors on the supporting cuffs.
    Zanotto D; Lenzi T; Stegall P; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650404. PubMed ID: 24187223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot.
    Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R
    IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of the ROBIN system: whole-arm multi-model sensorimotor environment for the Rehabilitation Of Brain INjuries while sitting or standing.
    Loureiro RC; Smith TA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975511. PubMed ID: 22275707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance.
    Grice PM; Killpack MD; Jain A; Vaish S; Hawke J; Kemp CC
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650464. PubMed ID: 24187281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ankle control and strength training for children with cerebral palsy using the Rutgers Ankle CP: a case study.
    Cioi D; Kale A; Burdea G; Engsberg J; Janes W; Ross S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975432. PubMed ID: 22275633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facilitating robot-assisted training in MS patients with arm paresis: a procedure to individually determine gravity compensation.
    Bastiaens H; Alders G; Feys P; Notelaers S; Coninx K; Kerkhofs L; Truyens V; Geers R; Goedhart A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975507. PubMed ID: 22275703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perspectives on mobile robots as tools for child development and pediatric rehabilitation.
    Michaud F; Salter T; Duquette A; Laplante JF
    Assist Technol; 2007; 19(1):21-36. PubMed ID: 17461288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.