These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 24187295)
1. A novel compact compliant actuator design for rehabilitation robots. Yu H; Huang S; Thakor NV; Chen G; Toh SL; Sta Cruz M; Ghorbel Y; Zhu C IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650478. PubMed ID: 24187295 [TBL] [Abstract][Full Text] [Related]
2. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot. Sergi F; Lee MM; O'Malley MK IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298 [TBL] [Abstract][Full Text] [Related]
3. A Novel Tendon-Driven Soft Actuator with Self-Pumping Property. Ren T; Li Y; Xu M; Li Y; Xiong C; Chen Y Soft Robot; 2020 Apr; 7(2):130-139. PubMed ID: 31584322 [TBL] [Abstract][Full Text] [Related]
4. Bi-directional series-parallel elastic actuator and overlap of the actuation layers. Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145 [TBL] [Abstract][Full Text] [Related]
5. A survey of bio-inspired compliant legged robot designs. Zhou X; Bi S Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609 [TBL] [Abstract][Full Text] [Related]
6. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation. Zhu Y; Zheng T; Jin H; Yang J; Zhao J Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545 [TBL] [Abstract][Full Text] [Related]
7. An intrinsically safe mechanism for physically coupling humans with robots. O'Neill G; Patel H; Artemiadis P IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650510. PubMed ID: 24187325 [TBL] [Abstract][Full Text] [Related]
8. Control system design of a 3-DOF upper limbs rehabilitation robot. Denève A; Moughamir S; Afilal L; Zaytoon J Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080 [TBL] [Abstract][Full Text] [Related]
9. A novel variable stiffness actuator: minimizing the energy requirements for the stiffness regulation. Tsagarikis NG; Jafari A; Caldwell DG Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1275-8. PubMed ID: 21095917 [TBL] [Abstract][Full Text] [Related]
10. Spring uses in exoskeleton actuation design. Wang S; van Dijk W; van der Kooij H IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669 [TBL] [Abstract][Full Text] [Related]
11. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273 [TBL] [Abstract][Full Text] [Related]
12. Robust and efficient walking with spring-like legs. Rummel J; Blum Y; Seyfarth A Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285 [TBL] [Abstract][Full Text] [Related]
13. An advanced rehabilitation robotic system for augmenting healthcare. Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745 [TBL] [Abstract][Full Text] [Related]
14. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832 [TBL] [Abstract][Full Text] [Related]
15. Design, Modelling, and Experimental Evaluation of a Compact Elastic Actuator for a Gait Assisting Exoskeleton. Herodotou P; Wang S IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():331-336. PubMed ID: 31374651 [TBL] [Abstract][Full Text] [Related]
16. Preliminary Assessment of a Compliant Gait Exoskeleton. Cestari M; Sanz-Merodio D; Garcia E Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092 [TBL] [Abstract][Full Text] [Related]
17. Novel compliant actuator for wearable robotics applications. Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322 [TBL] [Abstract][Full Text] [Related]
18. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation. Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903 [TBL] [Abstract][Full Text] [Related]
19. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton. Sarkisian SV; Gabert L; Lenzi T Wearable Technol; 2023; 4():e25. PubMed ID: 38510590 [TBL] [Abstract][Full Text] [Related]
20. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation. Otten A; van Vuuren W; Stienen A; van Asseldonk E; Schouten A; van der Kooij H IEEE Int Conf Rehabil Robot; 2011; 2011():5975456. PubMed ID: 22275654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]