BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24187300)

  • 21. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting telerobotics for sensorimotor rehabilitation: a locomotor embodiment.
    Koh MH; Yen SC; Leung LY; Gans S; Sullivan K; Adibnia Y; Pavel M; Hasson CJ
    J Neuroeng Rehabil; 2021 Apr; 18(1):66. PubMed ID: 33882949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Force Analysis and Evaluation of a Pelvic Support Walking Robot with Joint Compliance.
    Ji J; Guo S; Xi FJ
    J Healthc Eng; 2018; 2018():9235023. PubMed ID: 30622691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Path control: a method for patient-cooperative robot-aided gait rehabilitation.
    Duschau-Wicke A; von Zitzewitz J; Caprez A; Lunenburger L; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):38-48. PubMed ID: 20194054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training.
    Lo AC; Triche EW
    Neurorehabil Neural Repair; 2008; 22(6):661-71. PubMed ID: 18971381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gait impairment in neurological disorders: a new technological approach.
    Semprini R; Sale P; Foti C; Fini M; Franceschini M
    Funct Neurol; 2009; 24(4):179-83. PubMed ID: 20412722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
    Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An optimized design of a parallel robot for gait training.
    Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
    Cao J; Xie SQ; Das R; Zhu GL
    Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits.
    Wang P; Low KH; Tow A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Walking assist robot and its clinical application].
    Kakou H; Shitama H; Kimura Y; Nakamoto Y; Furuta N; Honda K; Wada F; Hachisuka K
    J UOEH; 2009 Jun; 31(2):207-18. PubMed ID: 19530565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders.
    Brütsch K; Koenig A; Zimmerli L; Mérillat-Koeneke S; Riener R; Jäncke L; van Hedel HJ; Meyer-Heim A
    J Rehabil Med; 2011 May; 43(6):493-9. PubMed ID: 21491072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the passive dynamics of walking on ground, tied-belt and split-belt treadmills, and via the Gait Enhancing Mobile Shoe (GEMS).
    Handzić I; Reed KB
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650509. PubMed ID: 24187324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial.
    Picelli A; Melotti C; Origano F; Waldner A; Gimigliano R; Smania N
    Parkinsonism Relat Disord; 2012 Sep; 18(8):990-3. PubMed ID: 22673035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The development of two mobile gait rehabilitation systems.
    Seo KH; Lee JJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):156-66. PubMed ID: 19228564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of treadmill or overground walking training program on gait in Parkinson's disease.
    Bello O; Sanchez JA; Lopez-Alonso V; Márquez G; Morenilla L; Castro X; Giraldez M; Santos-García D; Fernandez-del-Olmo M
    Gait Posture; 2013 Sep; 38(4):590-5. PubMed ID: 23428884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Poincare map based analysis of stroke patients' walking after a rehabilitation by a robot.
    Abedi M; Moghaddam MM; Fallah D
    Math Biosci; 2018 May; 299():73-84. PubMed ID: 29518402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human-robot interaction tests on a novel robot for gait assistance.
    Tagliamonte NL; Sergi F; Carpino G; Accoto D; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650387. PubMed ID: 24187206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.