These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 24187305)
21. The use of body weight support on ground level: an alternative strategy for gait training of individuals with stroke. Sousa CO; Barela JA; Prado-Medeiros CL; Salvini TF; Barela AM J Neuroeng Rehabil; 2009 Dec; 6():43. PubMed ID: 19951435 [TBL] [Abstract][Full Text] [Related]
22. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Husemann B; Müller F; Krewer C; Heller S; Koenig E Stroke; 2007 Feb; 38(2):349-54. PubMed ID: 17204680 [TBL] [Abstract][Full Text] [Related]
23. Robot-aided gait training in an individual with chronic spinal cord injury: a case study. Bishop L; Stein J; Wong CK J Neurol Phys Ther; 2012 Sep; 36(3):138-43. PubMed ID: 22854804 [TBL] [Abstract][Full Text] [Related]
24. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Jackson RW; Collins SH J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764 [TBL] [Abstract][Full Text] [Related]
25. Lokomat: a therapeutic chance for patients with chronic hemiplegia. Uçar DE; Paker N; Buğdaycı D NeuroRehabilitation; 2014; 34(3):447-53. PubMed ID: 24463231 [TBL] [Abstract][Full Text] [Related]
26. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697 [TBL] [Abstract][Full Text] [Related]
27. An intrinsically compliant robotic orthosis for treadmill training. Hussain S; Xie SQ; Jamwal PK; Parsons J Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099 [TBL] [Abstract][Full Text] [Related]
28. Combined robotic-aided gait training and physical therapy improve functional abilities and hip kinematics during gait in children and adolescents with acquired brain injury. Beretta E; Romei M; Molteni E; Avantaggiato P; Strazzer S Brain Inj; 2015; 29(7-8):955-62. PubMed ID: 25915458 [TBL] [Abstract][Full Text] [Related]
29. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Watanabe H; Tanaka N; Inuta T; Saitou H; Yanagi H Arch Phys Med Rehabil; 2014 Nov; 95(11):2006-12. PubMed ID: 25010538 [TBL] [Abstract][Full Text] [Related]
30. A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. Esquenazi A; Lee S; Packel AT; Braitman L PM R; 2013 Apr; 5(4):280-90. PubMed ID: 23200117 [TBL] [Abstract][Full Text] [Related]
31. Robotically-driven orthoses exert proximal-to-distal differential recovery on the lower limbs in children with hemiplegia, early after acquired brain injury. Beretta E; Molteni E; Biffi E; Morganti R; Avantaggiato P; Strazzer S Eur J Paediatr Neurol; 2018 Jul; 22(4):652-661. PubMed ID: 29650492 [TBL] [Abstract][Full Text] [Related]
32. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717 [TBL] [Abstract][Full Text] [Related]
33. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework. Hussein S; Kruger J IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649 [TBL] [Abstract][Full Text] [Related]
34. Speed-dependent treadmill training is effective to improve gait and balance performance in patients with sub-acute stroke. Lau KW; Mak MK J Rehabil Med; 2011 Jul; 43(8):709-13. PubMed ID: 21698340 [TBL] [Abstract][Full Text] [Related]
35. Alterations in stride-to-stride variability during walking in individuals with chronic ankle instability. Terada M; Bowker S; Thomas AC; Pietrosimone B; Hiller CE; Rice MS; Gribble PA Hum Mov Sci; 2015 Apr; 40():154-62. PubMed ID: 25553561 [TBL] [Abstract][Full Text] [Related]
36. Design and evaluation of Mina: a robotic orthosis for paraplegics. Neuhaus PD; Noorden JH; Craig TJ; Torres T; Kirschbaum J; Pratt JE IEEE Int Conf Rehabil Robot; 2011; 2011():5975468. PubMed ID: 22275666 [TBL] [Abstract][Full Text] [Related]
37. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Lo AC; Triche EW Neurorehabil Neural Repair; 2008; 22(6):661-71. PubMed ID: 18971381 [TBL] [Abstract][Full Text] [Related]
38. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques. McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830 [TBL] [Abstract][Full Text] [Related]
39. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Stein J; Bishop L; Stein DJ; Wong CK Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757 [TBL] [Abstract][Full Text] [Related]
40. Gait evaluation of the advanced reciprocating gait orthosis with solid versus dorsi flexion assist ankle foot orthoses in paraplegic patients. Bani MA; Arazpour M; Ghomshe FT; Mousavi ME; Hutchins SW Prosthet Orthot Int; 2013 Apr; 37(2):161-7. PubMed ID: 22988045 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]