These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24187315)

  • 1. A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA).
    Aubin PM; Sallum H; Walsh C; Stirling L; Correia A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650500. PubMed ID: 24187315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.
    Li J; Zheng R; Zhang Y; Yao J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975387. PubMed ID: 22275591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCRIPT passive orthosis: design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home.
    Ates S; Lobo-Prat J; Lammertse P; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650401. PubMed ID: 24187220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of the torque required to passively palmar abduct the thumb CMC joint in a pediatric population with hemiplegia and stroke.
    Stirling L; Ahmad MQ; Kelty-Stephen D; Correia A
    J Biomech; 2015 Dec; 48(16):4246-52. PubMed ID: 26542786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of hand function in children with cerebral palsy via an orthosis that provides wrist extension and thumb abduction.
    Barroso PN; Vecchio SD; Xavier YR; Sesselmann M; Araújo PA; Pinotti M
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):937-43. PubMed ID: 21689874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton.
    Tianyao Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():578-581. PubMed ID: 28324934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and testing of a functional arm orthosis in patients with neuromuscular diseases.
    Rahman T; Sample W; Seliktar R; Scavina MT; Clark AL; Moran K; Alexander MA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):244-51. PubMed ID: 17601194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Evaluation of an Actuated Exoskeleton for Examining Motor Control in Stroke Thumb.
    Wang F; Jones CL; Shastri M; Qian K; Kamper DG; Sarkar N
    Adv Robot; 2016; 30(3):165-177. PubMed ID: 27672232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular low-clearance wrist orthosis for improving wrist motion in children with cerebral palsy.
    Holley D; Johnson M; Harris G; Beardsley S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3069-72. PubMed ID: 25570639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creating a custom fabricated neoprene orthosis for optimal thumb positioning.
    Trujillo LG; Amini D
    J Hand Ther; 2013; 26(4):365-8; quiz 368. PubMed ID: 23906412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single degree-of-freedom exoskeleton mechanism design for thumb rehabilitation.
    Yihun Y; Miklos R; Perez-Gracia A; Reinkensmeyer DJ; Denney K; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1916-20. PubMed ID: 23366289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-DOF robotic exoskeleton interface for hand motion assistance.
    Iqbal J; Tsagarakis NG; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1575-8. PubMed ID: 22254623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.