These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 24187319)
1. Pulsed assistance: a new paradigm of robot training. De Santis D; Masia L; Morasso P; Squeri V; Zenzeri J; Casadio M; Riva A IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650504. PubMed ID: 24187319 [TBL] [Abstract][Full Text] [Related]
2. Self-adaptive robot training of stroke survivors for continuous tracking movements. Vergaro E; Casadio M; Squeri V; Giannoni P; Morasso P; Sanguineti V J Neuroeng Rehabil; 2010 Mar; 7():13. PubMed ID: 20230610 [TBL] [Abstract][Full Text] [Related]
3. A Computational Index to Describe Slacking During Robot Therapy. Piovesan D Adv Exp Med Biol; 2016; 957():351-365. PubMed ID: 28035575 [TBL] [Abstract][Full Text] [Related]
4. Robot-Assisted Reaching Performance of Chronic Stroke and Healthy Individuals in a Virtual Versus a Physical Environment: A Pilot Study. Norouzi-Gheidari N; Archambault PS; Fung J IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1273-1281. PubMed ID: 31056500 [TBL] [Abstract][Full Text] [Related]
5. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Emken JL; Benitez R; Reinkensmeyer DJ J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527 [TBL] [Abstract][Full Text] [Related]
6. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
7. Robot therapy for stroke survivors: proprioceptive training and regulation of assistance. Sanguineti V; Casadio M; Vergaro E; Squeri V; Giannoni P; Morasso PG Stud Health Technol Inform; 2009; 145():126-42. PubMed ID: 19592791 [TBL] [Abstract][Full Text] [Related]
8. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205 [TBL] [Abstract][Full Text] [Related]
9. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation. Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406 [TBL] [Abstract][Full Text] [Related]
10. A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Casadio M; Giannoni P; Morasso P; Sanguineti V Clin Rehabil; 2009 Mar; 23(3):217-28. PubMed ID: 19218297 [TBL] [Abstract][Full Text] [Related]
11. Training stroke patients with continuous tracking movements: evaluating the improvement of voluntary control. Casadio M; Giannoni P; Morasso P; Sanguineti V; Squeri V; Vergaro E Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5961-4. PubMed ID: 19964883 [TBL] [Abstract][Full Text] [Related]
12. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. Song R; Tong KY; Hu X; Li L IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):371-9. PubMed ID: 18701384 [TBL] [Abstract][Full Text] [Related]
13. Functional evaluation of robot end-point assisted gait re-education in chronic stroke survivors. De Luca A; Lentino C; Vernetti H; Checchia GA; Giannoni P; Morasso P; Casadio M IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650513. PubMed ID: 24187328 [TBL] [Abstract][Full Text] [Related]
14. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
15. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients. Panarese A; Colombo R; Sterpi I; Pisano F; Micera S Neurorehabil Neural Repair; 2012 Sep; 26(7):822-33. PubMed ID: 22374174 [TBL] [Abstract][Full Text] [Related]
16. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Stein J; Bishop L; Stein DJ; Wong CK Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of HEXORR Tone Assistance Mode Against Spring Assistance. Godfrey SB; Holley RJ; Lum PS IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):610-7. PubMed ID: 25667355 [TBL] [Abstract][Full Text] [Related]
18. Time Independent Functional task Training: a case study on the effect of inter-joint coordination driven haptic guidance in stroke therapy. Brokaw EB; Murray TM; Nef T; Lum PS; Brokaw EB; Nichols D; Holley RJ IEEE Int Conf Rehabil Robot; 2011; 2011():5975501. PubMed ID: 22275697 [TBL] [Abstract][Full Text] [Related]
19. Bilateral robot therapy based on haptics and reinforcement learning: Feasibility study of a new concept for treatment of patients after stroke. Squeri V; Casadio M; Vergaro E; Giannoni P; Morasso P; Sanguineti V J Rehabil Med; 2009 Nov; 41(12):961-5. PubMed ID: 19841824 [TBL] [Abstract][Full Text] [Related]
20. Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system. Hu XL; Tong KY; Li R; Chen M; Xue JJ; Ho SK; Chen PN IEEE Int Conf Rehabil Robot; 2011; 2011():5975424. PubMed ID: 22275625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]