These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24187320)

  • 1. Towards a parameterizable exoskeleton for training of hand function after stroke.
    Weiss P; Heyer L; Munte TF; Heldmann M; Schweikard A; Maehle E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650505. PubMed ID: 24187320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.
    Ockenfeld C; Tong RK; Susanto EA; Ho SK; Hu XL
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650392. PubMed ID: 24187211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke.
    Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation.
    Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach.
    Park W; Jeong W; Kwon GH; Kim YH; Kim L
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650482. PubMed ID: 24187299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback control of biomimetic exotendon device for hand rehabilitation in stroke.
    Kim DH; Lee SW; Park HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3618-21. PubMed ID: 25570774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance.
    Heung KHL; Tang ZQ; Ho L; Tung M; Li Z; Tong RKY
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():65-70. PubMed ID: 31374608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and preliminary testing of a novel wheelchair integrated exercise/ rehabilitation system.
    Hwang B; Jeon D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650347. PubMed ID: 24187166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a novel telerehabilitation system with a force-sensing mechanism.
    Zhang S; Guo S; Gao B; Hirata H; Ishihara H
    Sensors (Basel); 2015 May; 15(5):11511-27. PubMed ID: 25996511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.
    Li J; Zheng R; Zhang Y; Yao J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975387. PubMed ID: 22275591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A haptic knob for rehabilitation of hand function.
    Lambercy O; Dovat L; Gassert R; Burdet E; Teo CL; Milner T
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):356-66. PubMed ID: 17894268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a novel robotic interface to study finger motor control.
    Cruz EG; Kamper DG
    Ann Biomed Eng; 2010 Feb; 38(2):259-68. PubMed ID: 19937469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of the efficiency of a robotic rehabilitation training system for recovery of severe plegie hand motor function after a stroke.
    Tanabe H; Ikuta M; Morita Y
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():579-584. PubMed ID: 28813882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients.
    Cordo P; Lutsep H; Cordo L; Wright WG; Cacciatore T; Skoss R
    Neurorehabil Neural Repair; 2009 Jan; 23(1):67-77. PubMed ID: 18645190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton.
    Wang J; Fei Y; Chen W
    Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.