These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24187322)

  • 1. Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection.
    Novak D; Riener R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650507. PubMed ID: 24187322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online learning and adaptation of patient support during ADL training.
    Guidali M; Schlink P; Duschau-Wicke A; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975434. PubMed ID: 22275635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robotic system to train activities of daily living in a virtual environment.
    Guidali M; Duschau-Wicke A; Broggi S; Klamroth-Marganska V; Nef T; Riener R
    Med Biol Eng Comput; 2011 Oct; 49(10):1213-23. PubMed ID: 21796422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoring ADL function after wrist surgery in children with cerebral palsy: a novel Bilateral robot system design.
    Holley D; Theriault A; Kamara S; Anewenter V; Hughes D; Johnson MJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650463. PubMed ID: 24187280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation.
    Luo L; Peng L; Wang C; Hou ZG
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3433-3443. PubMed ID: 30736008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robots with a gentle touch: advances in assistive robotics and prosthetics.
    Harwin WS
    Technol Health Care; 1999; 7(6):411-7. PubMed ID: 10665674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks.
    Bertomeu-Motos A; Lledó LD; Díez JA; Catalan JM; Ezquerro S; Badesa FJ; Garcia-Aracil N
    Sensors (Basel); 2015 Dec; 15(12):30571-83. PubMed ID: 26690160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedforward model based arm weight compensation with the rehabilitation robot ARMin.
    Just F; Ozen O; Tortora S; Riener R; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation.
    Howard A; Brooks D; Brown E; Gebregiorgis A; Chen YP
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650487. PubMed ID: 24187304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VITA-an everyday virtual reality setup for prosthetics and upper-limb rehabilitation.
    Nissler C; Nowak M; Connan M; Büttner S; Vogel J; Kossyk I; Márton ZC; Castellini C
    J Neural Eng; 2019 Apr; 16(2):026039. PubMed ID: 30864550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of reaching movement with 6-DOF upper rehabilitation system 'Robotherapist'.
    Kikuchi T; Oda K; Isozumi S; Ohyama Y; Shichi N; Furusho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4262-5. PubMed ID: 19163654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human--machine load sharing in rehabilitation robotics.
    Rahman T; McClenathan K
    Technol Health Care; 1999; 7(6):425-9. PubMed ID: 10665676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using virtual robot-mediated play activities to assess cognitive skills.
    Encarnação P; Alvarez L; Rios A; Maya C; Adams K; Cook A
    Disabil Rehabil Assist Technol; 2014 May; 9(3):231-41. PubMed ID: 23597315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.