These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24187324)

  • 1. Comparison of the passive dynamics of walking on ground, tied-belt and split-belt treadmills, and via the Gait Enhancing Mobile Shoe (GEMS).
    Handzić I; Reed KB
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650509. PubMed ID: 24187324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limping on split-belt treadmills implies opposite kinematic and dynamic lower limb asymmetries.
    Tesio L; Malloggi C; Malfitano C; Coccetta CA; Catino L; Rota V
    Int J Rehabil Res; 2018 Dec; 41(4):304-315. PubMed ID: 30303831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation.
    Altman AR; Reisman DS; Higginson JS; Davis IS
    Gait Posture; 2012 Feb; 35(2):287-91. PubMed ID: 22015048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a passive dynamic walker model for human gait analysis.
    Handžić I; Reed KB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6945-8. PubMed ID: 24111342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a Gait Enhancing Mobile Shoe to Alter Over-Ground Walking Coordination.
    Handzic I; Vasudevan E; Reed KB
    IEEE Int Conf Robot Autom; 2012 May; 2012():4124-4129. PubMed ID: 23484067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robotic gait training system integrating split-belt treadmill, footprint sensing and synchronous EEG recording for neuro-motor recovery.
    Liu YH; Zhang B; Liu Q; Hsu WC; Hsiao YT; Su JY; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3573-7. PubMed ID: 26737065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of an unstable shoe construction on lower extremity gait characteristics.
    Nigg B; Hintzen S; Ferber R
    Clin Biomech (Bristol); 2006 Jan; 21(1):82-8. PubMed ID: 16209901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plantarflexion moment is a contributor to step length after-effect following walking on a split-belt treadmill in individuals with stroke and healthy individuals.
    Lauzière S; Miéville C; Betschart M; Duclos C; Aissaoui R; Nadeau S
    J Rehabil Med; 2014 Oct; 46(9):849-57. PubMed ID: 25074249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Pilot Study of a Gait Enhancing Mobile Shoe.
    Handzic I; Barno EM; Vasudevan EV; Reed KB
    Paladyn; 2011 Dec; 2(4):. PubMed ID: 24371521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric passive dynamic walker.
    Honeycutt C; Sushko J; Reed KB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975465. PubMed ID: 22275663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint-level coordination patterns for split-belt walking across different speed ratios.
    Kambic RE; Roemmich RT; Bastian AJ
    J Neurophysiol; 2023 May; 129(5):969-983. PubMed ID: 36988216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation.
    Skidmore J; Artemiadis P
    J Neuroeng Rehabil; 2016 Mar; 13():32. PubMed ID: 27004528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments.
    Williams G; Clark R; Schache A; Fini NA; Moore L; Morris ME; McCrory PR
    J Neurotrauma; 2011 Feb; 28(2):281-7. PubMed ID: 21174634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.
    Straudi S; Benedetti MG; Venturini E; Manca M; Foti C; Basaglia N
    NeuroRehabilitation; 2013; 33(4):555-63. PubMed ID: 24018369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidirectional transparent support for overground gait training.
    Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.