These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2418734)

  • 1. Sodium cotransport systems and the membrane potential difference.
    Eddy AA
    Ann N Y Acad Sci; 1985; 456():51-62. PubMed ID: 2418734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino Acid Transport and stimulation by substrates in the absence of a Na2+ electrochemical potential gradient.
    Heinz A; Jackson JW; Richey BE; Sachs G; Schafer JA
    J Membr Biol; 1981; 62(1-2):149-60. PubMed ID: 7277474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ + K+ + 2Cl- cotransport in animal cells--its role in volume regulation.
    Geck P; Pfeiffer B
    Ann N Y Acad Sci; 1985; 456():166-82. PubMed ID: 2418724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some novel aspects of the relationship between the amino acid gradient and the sodium electrochemical gradient in mouse ascites tumour cells.
    Eddy AA; Hopkins P; Johnson E
    Biophys Chem; 1988 Feb; 29(1-2):119-25. PubMed ID: 3358997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of cellular amino acids and the Na+ : K+ pump on the membrane potential of the Ehrlich ascites tumor cell.
    Laris PC; Bootman M; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1978 Sep; 512(2):397-414. PubMed ID: 213114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified transport substrates as probes for intramembrane gradients.
    Christensen HN; De Cespedes C; Handlogten ME; Ronquist G
    Ann N Y Acad Sci; 1974 Feb; 227():355-79. PubMed ID: 4133305
    [No Abstract]   [Full Text] [Related]  

  • 8. Energization of amino acid transport, studied for the Ehrlich ascites tumor cell.
    Christensen HN; de Cespedes C; Handlogten ME; Ronquist G
    Biochim Biophys Acta; 1973 Dec; 300(4):487-522. PubMed ID: 4130564
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of reversal on Na + and K + electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells.
    Schafer JA; Heinz E
    Biochim Biophys Acta; 1971 Oct; 249(1):15-33. PubMed ID: 5141124
    [No Abstract]   [Full Text] [Related]  

  • 10. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract]   [Full Text] [Related]  

  • 12. Electrophysiological studies of sodium cotransport in epithelia: toward a cellular model.
    Schultz SG; Hudson RL; Lapointe JY
    Ann N Y Acad Sci; 1985; 456():127-35. PubMed ID: 2418723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma membrane potential of Lettré cells does not depend on cation gradients but on pumps.
    Bashford CL; Pasternak CA
    J Membr Biol; 1984; 79(3):275-84. PubMed ID: 6471096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells.
    Potashner SJ; Johnstone RM
    Biochim Biophys Acta; 1971 Mar; 233(1):91-103. PubMed ID: 5579140
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of the fluorescent probe, 3,3'-dipropylthiodicarbocyanine iodide, on the membrane potential of Ehrlich ascites tumor cells.
    Smith TC; Robinson SC
    Biochem Biophys Res Commun; 1980 Jul; 95(2):722-7. PubMed ID: 7417285
    [No Abstract]   [Full Text] [Related]  

  • 16. Transport in mouse ascites tumor cells: symport of Na+ with amino acids.
    Eddy AA; Johnson ER
    Methods Enzymol; 1989; 173():771-7. PubMed ID: 2674622
    [No Abstract]   [Full Text] [Related]  

  • 17. Comments and experiments on the kinetics of Na+ gradient-coupled glucose transport as found in rabbit jejunal brush-border membrane vesicles.
    Crane RK
    Ann N Y Acad Sci; 1985; 456():36-46. PubMed ID: 2418732
    [No Abstract]   [Full Text] [Related]  

  • 18. Plasma membrane potential of neutrophils generated by the Na+ pump.
    Bashford CL; Pasternak CA
    Biochim Biophys Acta; 1985 Jul; 817(1):174-80. PubMed ID: 2408670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of plasma membrane potential by the Na+-pump coupled to proton extrusion.
    Bashford CL; Pasternak CA
    Eur Biophys J; 1985; 12(4):229-35. PubMed ID: 2412812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of HgCl2 to evaluate the cosubstrate: amino acid transport stoichiometry in Ehrlich ascites tumor cells.
    Dawson WD; Robinson SC; Smith TC
    J Cell Physiol; 1983 May; 115(2):131-6. PubMed ID: 6221025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.